基于转录组分析弱光胁迫对葡萄幼苗的影响
作者:
基金项目:

浙江省重点研发计划(2021C02053);宁波市科技创新2025重大专项(2019B10015);2021浙江省新苗人才计划(2021R420020);浙江省教育厅一般科研项目(Y202148115)


Transcriptional analysis of grape in response to weak light stress
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    葡萄在生长过程中,常常暴露在光照不足的环境条件下,弱光严重影响葡萄的正常生长发育。为了探究弱光胁迫对葡萄生理生化的影响,本研究以‘鄞红’葡萄幼苗为试验对象,对其在不同弱光强度胁迫下(CK、T1、T2、T3和T4,胁迫强度逐渐增大)各种生理指标变化及部分处理组的转录组进行分析。结果表明,低强度弱光胁迫对葡萄光合作用以及生理生化的影响并不显著;随着胁迫强度的增大,葡萄叶片表皮层、栅栏组织、海绵组织变薄,海绵组织和栅栏组织细胞间隙变大,过氧化氢酶活性、过氧化物酶活性和超氧化物歧化酶活性逐渐下降,同时可溶性蛋白含量下降,游离脯氨酸含量上升。在遮光率为80%的胁迫下,葡萄光合作用以及其他生理生化各指标均发生显著变化。RNA-seq数据显示CK和T2、CK和T4、T2和T4的差异表达基因分别为13 913、13 293和14 943个,大部分差异代谢通路均与植物的抗逆响应密切相关;多个抗逆信号通路的基因表达发生变化,包括JA/MYC2途径、MAPK信号途径。此外多酚氧化酶、硫氧还蛋白等多个抗氧化相关基因以及光敏色素相关基因的表达也发生变化,以上结果表明,在弱光胁迫下,‘鄞红’葡萄可能通过调整活性氧清除剂的表达水平,以维持体内活性氧的平衡状态,同时通过调整光合色素和光反应结构蛋白的表达水平,以维持体内光合作用的平衡与正常运作。本研究将为葡萄耐弱光生理响应机制的探究、抗弱光葡萄品种的选育及设施栽培条件的优化提供理论与技术支持。

    Abstract:

    Grape (Vitis vinifera L.) in production is frequently exposed to inadequate light, which significantly affects its agronomic traits via inhibiting their physiological, metabolic and developmental processes. To explore the mechanism how the grape plants respond to the weak light stress, we used ‘Yinhong’ grape and examined their physiology-biochemistry characteristics and transcriptional profile under different levels of weak light stress. The results showed that grape seedlings upon low intensity shading treatments were not significantly affected. As the shading stress intensity was strengthened, the epidermis cells, palisade tissue, and spongy tissue in the leaves were thinner, the intercellular space between the palisade tissue and spongy tissue was larger compared with that of the control, and the activities of superoxide dismutase, catalase and peroxidase were decreased gradually. Additionally, the soluble protein content increased and the free proline content decreased gradually. Compared with the control, significant changes in plant photosynthetic characteristics and physiology-biochemistry characteristics were observed under high intensity of shading (80%). RNA-seq data showed that the differentially expressed genes between CK and T2, CK and T4, T2 and T4 were 13 913, 13 293 and 14 943, respectively. Most of the enrichment pathways were closely related with the plant's response to stress. Several signaling pathways in response to stress-resistance, e.g. JA/MYC2 pathway and MAPK signal pathway, were activated under weak light stress. The expression level of a variety of genes related to antioxidation (such as polyphenol oxidase and thioredoxin), photosynthesis (such as phytochrome) was altered under weak light stress, indicating that ‘Yinhong’ grape may activate the antioxidation related pathways to cope with reactive oxygen species (ROS). In addition, it may activate the expression of photosynthetic pigment and light reaction structural protein to maintain the photosynthesis activity. This research may help better understand the relevant physiological response mechanism and facilitate cultivation of grape seedlings under weak light.

    参考文献
    [1] Chen TC, Xu T, Zhang TY, et al. Genome-wide identification and characterization of DnaJ gene family in grape (Vitis vinifera L.). Horticulturae, 2021, 7(12):589.
    [2] 谢计蒙, 王海波, 王孝娣, 等. 设施葡萄品种连年丰产能力与光合生理特性关系研究. 果树学报, 2012, 29(5):843-851. Xie JM, Wang HB, Wang XD, et al. Relationship between the ability of sustainable productivity and photosynthetic indexes of grape cultivars in greenhouse. J Fruit Sci, 2012, 29(5):843-851(in Chinese).
    [3] Manavalan LP, Vanangamudi M, Thandapani V. Effect of low light on yield and physiological attributes of rice. Int Rice Res, 2004, 29:71-73.
    [4] 眭晓蕾, 张宝玺, 张振贤, 毛胜利, 王立浩. 不同品种辣椒幼苗光合特性及弱光耐受性的差异. 园艺学报, 2005, 32(2):222-227. Sui XL, Zhang BX, Zhang ZX, et al. Differences of photosynthetic characteristics and low light-tolerance in seedlings of four pepper cultivars. Acta Hortic Sin, 2005, 32(2):222-227(in Chinese).
    [5] 吴正锋, 王才斌, 李新国, 等. 苗期遮荫对花生(Arachis hypogaea L.)光合生理特性的影响. 生态学报, 2009, 29(3):1366-1373. Wu ZF, Wang CB, Li XG, et al. Effects of shading at seedling stage on photosynthetic characteristics of Arachis hypogaea L. leaves. Acta Ecol Sin, 2009, 29(3):1366-1373(in Chinese).
    [6] 战吉宬, 黄卫东, 王秀芹, 王利军. 弱光下生长的葡萄叶片蒸腾速率和气孔结构的变化. 植物生态学报, 2005, 29(1):26-31. Zhan JC, Huang WD, Wang XQ, et al. Leaf transpiration and stomatal structure of young grape plants grown in a low light environment. Acta Phytoecol Sin, 2005, 29(1):26-31(in Chinese).
    [7] 付涛, 吴月燕, 陶巧静, 等. 幼年鄞红葡萄对短期弱光胁迫的生理生化响应. 江苏农业学报, 2014, 30(2):405-410. Fu T, Wu YY, Tao QJ, et al. Physiological and biochemical responses of grape Yinhong seedlings to short-term weak-light stress. Jiangsu J Agric Sci, 2014, 30(2):405-410(in Chinese).
    [8] 吴月燕, 付涛, 王忠华, 等. 鄞红葡萄及其8个优良单株主要性状差异分析. 核农学报, 2016, 30(9):1684-1692. Wu YY, Fu T, Wang ZH, et al. The main differences in characteristics of Yinhong and its eight elite individuals of Vitis vinifera L. J Nucl Agric Sci, 2016, 30(9):1684-1692(in Chinese).
    [9] 秦玲, 康文怀, 齐艳玲, 等. 盐胁迫对酿酒葡萄叶片细胞结构及光合特性的影响. 中国农业科学, 2012, 45(20):4233-4241. Qin L, Kang WH, Qi YL, et al. Effects of salt stress on mesophyll cell structures and photosynthetic characteristics in leaves of wine grape (Vitis spp.). Sci Agric Sin, 2012, 45(20):4233-4241(in Chinese).
    [10] 李学孚, 倪智敏, 吴月燕, 等. 盐胁迫对‘鄞红’葡萄光合特性及叶片细胞结构的影响. 生态学报, 2015, 35(13):4436-4444. Li XF, Ni ZM, Wu YY, et al. Effects of salt stress on photosynthetic characteristics and leaf cell structure of ‘Yinhong’ grape seedlings. Acta Ecol Sin, 2015, 35(13):4436-4444(in Chinese).
    [11] Song J, Chen M, Feng G, et al. Effect of salinity on growth, ion accumulation and the roles of ions in osmotic adjustment of two populations of Suaeda salsa. Plant Soil, 2009, 314(1/2):133-141.
    [12] 唐韡, 李天来, 张秀美, 等. 苗期弱光胁迫对番茄生长和叶绿素含量的影响及其恢复效应. 沈阳农业大学学报, 2007, 38(3):278-282. Tang W, Li TL, Zhang XM, et al. Effects of low light stress on growth and chlorophyll content of seedling tomato and recovery effectiveness. J Shenyang Agric Univ, 2007, 38(3):278-282(in Chinese).
    [13] 刘慧民, 马艳丽, 王柏臣, 等. 两种绣线菊耐弱光能力的光合适应性. 生态学报, 2012, 32(23):7519-7531. Liu HM, Ma YL, Wang BC, et al. Photosynthetic adaptability of the resistance ability to weak light of 2 species Spiraea L.. Acta Ecol Sin, 2012, 32(23):7519-7531(in Chinese).
    [14] 李静. 低温弱光胁迫对甜瓜幼苗生长及生理指标的影响. 河南农业科学, 2012, 41(5):106-109. Li J. Effects of chilling and low light on vegetative and physiological parameters of melon seedlings. J Henan Agric Sci, 2012, 41(5):106-109(in Chinese).
    [15] Yang B, Tang J, Yu ZH, et al. Light stress responses and prospects for engineering light stress tolerance in crop plants. J Plant Growth Regul, 2019, 38(4):1489-1506.
    [16] Zhang YT, Jiang LY, Li YL, et al. Effect of red and blue light on anthocyanin accumulation and differential gene expression in strawberry (Fragaria×ananassa). Molecules, 2018, 23(4):820.
    [17] 郁继华, 张国斌, 冯致, 等. 低温弱光对辣椒幼苗抗氧化酶活性与质膜透性的影响. 西北植物学报, 2005, 25(12):2478-2483. Yu JH, Zhang GB, Feng Z, et al. Effects of low temperature and weak light on anti-oxidative enzyme activities and plasm-membrane permeability of pepper seedlings. Acta Bot Boreali Occidentalia Sin, 2005, 25(12):2478-2483(in Chinese).
    [18] 刘永华, 吴晓花, 李国景, 等. 低温弱光对生态型瓠瓜幼苗生长和生理生化特性的影响. 浙江农业学报, 2006, 18(6):421-424. Liu YH, Wu XH, Li GJ, et al. Effects of chilling and low light intensity on the seedling growth and physiological and biochemical characteristics of different ecotype gourd. Acta Agric Zhejiangensis, 2006, 18(6):421-424(in Chinese).
    [19] 张亚冰, 刘崇怀, 孙海生, 等. 葡萄砧木耐盐性与丙二醛和脯氨酸关系的研究. 西北植物学报, 2006, 26(8):1709-1712. Zhang YB, Liu CH, Sun HS, et al. Relation between salt tolerance of grape rootstock and MDA and proline contents in grape leaves. Acta Bot Boreali Occidentalia Sin, 2006, 26(8):1709-1712(in Chinese).
    [20] 赵军营, 王利军, 范培格, 等. 半根交替干旱对‘大久保’桃叶片中几种有机渗透调节物质的影响. 园艺学报, 2006, 33(4):801-804. Zhao JY, Wang LJ, Fan PG, et al. Effects of alternative half root drying on accumulation of several organic osmolytes in ‘Okubo’ peach leaves. Acta Hortic Sin, 2006, 33(4):801-804(in Chinese).
    [21] Gulen H, Turhan E, Eris A. Changes in peroxidase activities and soluble proteins in strawberry varieties under salt-stress. Acta Physiol Plant, 2006, 28(2):109-116.
    [22] 赵薇, 惠竹梅, 林刚, 等. 硒对水分胁迫下赤霞珠葡萄幼苗叶片生理生化指标的影响. 果树学报, 2011, 28(6):984-990. Zhao W, Xi ZM, Lin G, et al. Effect of selenium on physiological and biochemical indexes of Vitis vinifera cv. Cabernet Sauvignon leaves under water stress. J Fruit Sci, 2011, 28(6):984-990(in Chinese).
    [23] 陈磊, 郭军, 田时炳, 等. 低温弱光胁迫对不同茄子品种幼苗抗氧化特性的影响. 西南农业学报, 2012, 25(6):2054-2058. Chen L, Guo J, Tian SB, et al. Effects of low temperature and poor light intensity stress on antioxidant properties in seedlings of different eggplant varieties. Southwest China J Agric Sci, 2012, 25(6):2054-2058(in Chinese).
    [24] 眭晓蕾, 毛胜利, 王立浩, 等. 辣椒幼苗叶片解剖特征及光合特性对弱光的响应. 园艺学报, 2009, 36(2):195-208. Sui XL, Mao SL, Wang LH, et al. Response of anatomical structure and photosynthetic characteristics to low light in leaves of Capsicum seedlings. Acta Hortic Sin, 2009, 36(2):195-208(in Chinese).
    [25] Browse J. Jasmonate passes muster:a receptor and targets for the defense hormone. Annu Rev Plant Biol, 2009, 60:183-205.
    [26] Sasaki-Sekimoto Y, Taki N, Obayashi T, et al. Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J, 2005, 44(4):653-668.
    [27] Katsir L, Chung HS, Koo AJK, et al. Jasmonate signaling:a conserved mechanism of hormone sensing. Curr Opin Plant Biol, 2008, 11(4):428-435.
    [28] Shan XY, Yan JB, Xie DX. Comparison of phytohormone signaling mechanisms. Curr Opin Plant Biol, 2012, 15(1):84-91.
    [29] Dombrecht B, Xue GP, Sprague SJ, et al. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell, 2007, 19(7):2225-2245.
    [30] 易文凯, 王佳, 杨辉, 等. 植物ABA受体及其介导的信号转导通路. 植物学报, 2012, 47(5):515-524. Yi WK, Wang J, Yang H, et al. Abscisic acid receptors:abscisic acid signaling transduction pathways in plants. Chin Bull Bot, 2012, 47(5):515-524(in Chinese).
    [31] Aleman F, Yazaki J, Lee M, et al. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription Factor:a putative link of ABA and JA signaling. Sci Rep, 2016, 6:28941.
    [32] Hou XL, Lee LYC, Xia KF, et al. DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell, 2010, 19(6):884-894.
    [33] Song SS, Huang H, Gao H, et al. Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell, 2014, 26(1):263-279.
    [34] 代丽, 宫长荣, 史霖, 等. 植物多酚氧化酶研究综述. 中国农学通报, 2007, 23(6):312-316. Dai L, Gong CR, Shi L, et al. Polyphenol oxidase in plants. Chin Agric Sci Bull, 2007, 23(6):312-316(in Chinese).
    [35] 夏德习, 管清杰, 金淑梅, 等. 拟南芥硫氧还蛋白M1型基因(AtTRX m1)与环境逆境之间的关系. 分子植物育种, 2007, 5(1):21-26. Xia DX, Guan QJ, Jin SM, et al. The relationship of Arabidopsis thaliana thioredoxin M-type 1(AtTRX m1) gene with environmental stress. Mol Plant Breed, 2007, 5(1):21-26(in Chinese).
    [36] Laloi C, Mestres-Ortega D, Marco Y, et al. The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol, 2004, 134(3):1006-1016.
    [37] 杨有新, 王峰, 蔡加星, 等. 光质和光敏色素在植物逆境响应中的作用研究进展. 园艺学报, 2014, 41(9):1861-1872. Yang YX, Wang F, Cai JX, et al. Recent advances in the role of light quality and phytochrome in plant defense resistance against environmental stresses. Acta Hortic Sin, 2014, 41(9):1861-1872(in Chinese).
    [38] Moreno JE, Tao Y, Chory J, et al. Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. PNAS, 2009, 106(12):4935-4940.
    [39] Zhai QZ, Li CB, Zheng WG, et al. Phytochrome chromophore deficiency leads to overproduction of jasmonic acid and elevated expression of jasmonate-responsive genes in Arabidopsis. Plant Cell Physiol, 2007, 48(7):1061-1071.
    [40] Boccalandro HE, Rugnone ML, Moreno JE, et al. Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. Plant Physiol, 2009, 150(2):1083-1092.
    [41] Boggs JZ, Loewy K, Bibee K, et al. Phytochromes influence stomatal conductance plasticity in Arabidopsis thaliana. Plant Growth Regul, 2010, 60(2):77-81.
    [42] Wang FF, Lian HL, Kang CY, et al. Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana. Mol Plant, 2010, 3(1):246-259.
    [43] Liu J, Zhang F, Zhou JJ, et al. Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice. Plant Mol Biol, 2012, 78(3):289-300.
    [44] Devireddy AR, Liscum E, Mittler R. Phytochrome B is required for systemic stomatal responses and reactive oxygen species signaling during light stress. Plant Physiol, 2020, 184(3):1563-1572.
    相似文献
    引证文献
引用本文

陈天池,徐涛,李学孚,沈乐意,胡玲玲,郭雁飞,贾永红,吴月燕. 基于转录组分析弱光胁迫对葡萄幼苗的影响[J]. 生物工程学报, 2022, 38(10): 3859-3877

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-12
  • 在线发布日期: 2022-10-18
  • 出版日期: 2022-10-25
文章二维码
您是第5985492位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司