定量蛋白质组学揭示酵母去泛素化酶Ubp14生物学功能
作者:
  • 李招娣

    李招娣

    重庆医科大学 基础医学院 细胞生物学与遗传学教研室 分子医学与肿瘤研究中心, 重庆 400016;军事科学院军事医学研究院 生命组学研究所 中国医学科学院蛋白质组学与药物研发新技术创新单元 国家蛋白质科学中心 (北京) 北京蛋白质组研究中心 蛋白质组学国家重点实验室, 北京 102206
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 兰秋艳

    兰秋艳

    军事科学院军事医学研究院 生命组学研究所 中国医学科学院蛋白质组学与药物研发新技术创新单元 国家蛋白质科学中心 (北京) 北京蛋白质组研究中心 蛋白质组学国家重点实验室, 北京 102206
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李衍常

    李衍常

    军事科学院军事医学研究院 生命组学研究所 中国医学科学院蛋白质组学与药物研发新技术创新单元 国家蛋白质科学中心 (北京) 北京蛋白质组研究中心 蛋白质组学国家重点实验室, 北京 102206
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 徐聪

    徐聪

    军事科学院军事医学研究院 生命组学研究所 中国医学科学院蛋白质组学与药物研发新技术创新单元 国家蛋白质科学中心 (北京) 北京蛋白质组研究中心 蛋白质组学国家重点实验室, 北京 102206
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 常蕾

    常蕾

    军事科学院军事医学研究院 生命组学研究所 中国医学科学院蛋白质组学与药物研发新技术创新单元 国家蛋白质科学中心 (北京) 北京蛋白质组研究中心 蛋白质组学国家重点实验室, 北京 102206
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 徐平

    徐平

    军事科学院军事医学研究院 生命组学研究所 中国医学科学院蛋白质组学与药物研发新技术创新单元 国家蛋白质科学中心 (北京) 北京蛋白质组研究中心 蛋白质组学国家重点实验室, 北京 102206
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 段昌柱

    段昌柱

    重庆医科大学 基础医学院 细胞生物学与遗传学教研室 分子医学与肿瘤研究中心, 重庆 400016
    在期刊界中查找
    在百度中查找
    在本站中查找
基金项目:

国家自然科学基金(32071431,31700723);国家重点研发计划(2017YFC0906600,2017YFA0505000)


Quantitative proteomics reveal the potential biological functions of the deubiquitinating enzyme Ubp14 in Saccharomyces cerevisiae
Author:
  • LI Zhaodi

    LI Zhaodi

    Molecular Medicine and Cancer Research Center, Department of Cell Biology and Genetics, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China;State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug, Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Academy of Military Medical Sciences of Academy of Military Science, Beijing 102206, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LAN Qiuyan

    LAN Qiuyan

    State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug, Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Academy of Military Medical Sciences of Academy of Military Science, Beijing 102206, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Yanchang

    LI Yanchang

    State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug, Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Academy of Military Medical Sciences of Academy of Military Science, Beijing 102206, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Cong

    XU Cong

    State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug, Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Academy of Military Medical Sciences of Academy of Military Science, Beijing 102206, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHANG Lei

    CHANG Lei

    State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug, Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Academy of Military Medical Sciences of Academy of Military Science, Beijing 102206, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Ping

    XU Ping

    State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug, Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Academy of Military Medical Sciences of Academy of Military Science, Beijing 102206, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DUAN Changzhu

    DUAN Changzhu

    Molecular Medicine and Cancer Research Center, Department of Cell Biology and Genetics, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    泛素化是一种动态可逆的蛋白质翻译后修饰,泛素分子在泛素激活酶、泛素结合酶和泛素连接酶的级联酶促反应催化下共价连接到底物蛋白上。去泛素化酶将泛素分子从底物上移除,动态可逆地调控泛素化修饰,在成熟泛素的生成、泛素链的移除与修剪、游离泛素链的回收等过程中发挥着关键的调控作用。本文的研究对象是酵母中泛素特异性蛋白酶(ubiquitin specific protease,USP)家族成员Ubp14,负责回收细胞内游离的泛素链。本研究定量比较了酵母细胞中Ubp14缺失对全蛋白质组的影响,进而找出其潜在的调控通路和分子功能。首先,通过同源重组技术构建了ubp14Δ菌株,发现其生长速度低于野生型酵母。利用稳定同位素氨基酸代谢标记技术结合深度覆盖的蛋白质组学分析技术,系统比较了ubp14Δ菌株相对于野生型菌株的差异蛋白,共计鉴定3 685个蛋白,通过统计学分析筛选得到109个差异蛋白。基因本体论分析发现,Ubp14缺失引起的差异蛋白主要参与了包括氨基酸代谢、氧化还原和热应激等生物学过程。本研究为深入探究去泛素化酶Ubp14的生物学功能,进而深刻理解游离泛素的稳态平衡与生物学过程调控提供了高可信的蛋白质组学数据信息。

    Abstract:

    Ubiquitination is one of the reversible protein post-translational modifications, in which ubiquitin molecules bind to the target protein in a cascade reaction of ubiquitin activating enzymes, ubiquitin conjugating enzymes, and ubiquitin ligases. The deubiquitinating enzymes (DUBs) remove ubiquitin residues from the substrates, which play key roles in the formation of mature ubiquitin, the removal and trimming of ubiquitin chains, as well as the recycling of free ubiquitin chains. Ubp14, a member of the ubiquitin specific proteases family in Saccharomyces cerevisiae, is mainly responsible for the recycling of intracellular free ubiquitin chains. To investigate its global biological function, a ubp14Δ mutant was constructed by homologous recombination technique. The growth rate of ubp14Δ mutant was lower than that of the wild-type (WT) strain. Using stable isotope labeling by amino acids in cell culture (SILAC) combined with deep coverage proteomics analysis, the differentially expressed proteins of ubp14Δ mutant relative to the wild-type strain were systematically analyzed. A total of 3 685 proteins were identified in this study, and 109 differentially expressed proteins were filtered out by statistical analysis. Gene ontology analysis found that differentially expressed proteins caused by Ubp14 loss were mainly involved in amino acid metabolism, REDOX, heat shock stress and etc, which shed light on the broad biological function of this DUB. This study provides highly reliable proteomic data for further exploring the biological functions of the deubiquitination enzyme Ubp14, and further understanding the relationship between the free ubiquitin homeostasis and biological process regulation.

    参考文献
    [1] Swatek KN, Komander D. Ubiquitin modifications. Cell Res. 2016, 26(4):399-422.
    [2] 李衍常, 高媛, 徐忠伟, 等. 蛋白质组学在去泛素化酶研究中的应用. 生物工程学报, 2014, 30(9):1341-1350. Li YC, Gao Y, Xu ZW, et al. Application of proteomics in deubiquitinases research. Chin J Biotech, 2014, 30(9):1341-1350(in Chinese).
    [3] Amer-Sarsour F, Kordonsky A, Berdichevsky Y, et al. Deubiquitylating enzymes in neuronal health and disease. Cell Death Dis, 2021, 12(1):120.
    [4] Mevissen TET, Komander D. Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem, 2017, 86:159-192.
    [5] Ruan J, Schlüter D, Wang X. Deubiquitinating enzymes (DUBs):DoUBle-edged swords in CNS autoimmunity. J Neuroinflammation, 2020, 17(1):102.
    [6] Bodda C, Reinert LS, Fruhwürth S, et al. HSV1 VP1-2 deubiquitinates STING to block type I interferon expression and promote brain infection. J Exp Med, 2020, 217(7):e20191422.
    [7] Deng L, Meng T, Chen L, et al. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther, 2020, 5(1):11.
    [8] Schauer NJ, Magin RS, Liu X, et al. Advances in discovering deubiquitinating enzyme (DUB) inhibitors. J Med Chem, 2020, 63(6):2731-2750.
    [9] Harrigan JA, Jacq X, Martin NM, et al. Deubiquitylating enzymes and drug discovery:emerging opportunities. Nat Rev Drug Discov, 2018, 17(1):57-78.
    [10] Farshi P, Deshmukh RR, Nwankwo JO, et al. Deubiquitinases (DUBs) and DUB inhibitors:a patent review. Expert Opin Ther Pat, 2015, 25(10):1191-1208.
    [11] Lim KH, Joo JY, Baek KH. The potential roles of deubiquitinating enzymes in brain diseases. Ageing Res Rev, 2020, 61:101088.
    [12] Das T, Shin SC, Song EJ, et al. Regulation of deubiquitinating enzymes by post-translational modifications. Int J Mol Sci, 2020, 21(11):4028.
    [13] Nijman SM, Luna-Vargas MP, Velds A, et al. A genomic and functional inventory of deubiquitinating enzymes. Cell, 2005, 123(5):773-86.
    [14] Ning F, Xin H, Liu J, et al. Structure and function of USP5:insight into physiological and pathophysiological roles. Pharmacol Res, 2020, 157:104557.
    [15] Reyes-Turcu FE, Horton JR, Mullally JE, et al. The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell, 2006, 124(6):1197-208.
    [16] Xie X, Matsumoto S, Endo A, et al. Deubiquitylases USP5 and USP13 are recruited to and regulate heat-induced stress granules through their deubiquitylating activities. J Cell Sci, 2018, 131(8):jcs210856.
    [17] Nakajima S, Lan L, Wei L, et al. Ubiquitin-specific protease 5 is required for the efficient repair of DNA double-strand breaks. PLoS One, 2014, 9(1):e84899.
    [18] Garcia-Caballero A, Gadotti VM, Chen L, et al. A cell-permeant peptide corresponding to the cUBP domain of USP5 reverses inflammatory and neuropathic pain. Mol Pain, 2016, 12:1744806916642444.
    [19] Pan J, Qiao Y, Chen C, et al. USP5 facilitates non-small cell lung cancer progression through stabilization of PD-L1. Cell Death Dis, 2021, 12(11):1051.
    [20] Li G, Yang T, Chen Y, et al. USP5 sustains the proliferation of glioblastoma through stabilization of cyclin D1. Front Pharmacol, 2021, 12:720307.
    [21] Huang W, Liu X, Zhang Y, et al. USP5 promotes breast cancer cell proliferation and metastasis by stabilizing HIF2α. J Cell Physiol, 2022, Epub ahead of print.
    [22] Li Y, Lan Q, Gao Y, et al. Ubiquitin linkage specificity of deubiquitinases determines cyclophilin nuclear localization and degradation. iScience, 2020, 23(4):100984.
    [23] Xu P, Duong DM, Seyfried NT, et a. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell, 2009, 137(1):133-145.
    [24] Eisele F, Braun B, Pfirrmann T, et al. Mutants of the deubiquitinating enzyme Ubp14 decipher pathway diversity of ubiquitin-proteasome linked protein degradation. Biochem Biophys Res Commun, 2006, 350(2):329-333.
    [25] Mapa CE, Arsenault HE, Conti MM, et al. A balance of deubiquitinating enzymes controls cell cycle entry. Mol Biol Cell, 2018, 29(23):2821-2834.
    [26] Amerik AYu, Swaminathan S, Krantz BA, et al. In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO J, 1997, 16(16):4826-4838.
    [27] Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012, 81:203-229.
    [28] Heride C, Urbé S, Clague MJ. Ubiquitin code assembly and disassembly. Curr Biol, 2014, 24(6):R215-20.
    [29] 刘伟, 贺福初, 姜颖. 蛋白质组体内标记技术——SILAC技术. 生命的化学, 2009(3):427-430. Liu W, He FC, Jiang Y. Proteome in vivo labeling using SILAC technology. Chem life, 2009, 29(3):427-430(in Chinese).
    [30] Lan Q, Wang Y, Sun Z, et al. Quantitative proteomics combined with two genetic strategies for screening substrates of ubiquitin ligase Hrt3. J Proteome Res, 2020, 19(1):493-502.
    [31] Kouranti I, McLean JR, Feoktistova A, et al. A global census of fission yeast deubiquitinating enzyme localization and interaction networks reveals distinct compartmentalization profiles and overlapping functions in endocytosis and polarity. PLoS Biol, 2010, 8(9):e1000471.
    [32] Huh WK, Falvo JV, Gerke LC, et al. Global analysis of protein localization in budding yeast. Nature, 2003; 425(6959):686-691.
    [33] Zhao M, Wu F, Xu P. Development of a rapid high-efficiency scalable process for acetylated Sus scrofa cationic trypsin production from Escherichia coli inclusion bodies. Protein Expr Purif, 2015, 116:120-126.
    [34] Wu F, Zhao M, Zhang Y, et al. Recombinant acetylated trypsin demonstrates superior stability and higher activity than commercial products in quantitative proteomics studies. Rapid Commun Mass Spectrom, 2016, 30(8):1059-1066.
    [35] 林晓华, 柯崇榕, 吴毕莎, 等. 酿酒酵母SNF4基因敲除缺失菌株的构建. 生物工程学报, 2011, 27(4):572-578. Lin XH, He CR, Wu BS, et al. Construction of Saccharomyces cerevisiae mutant with knockout of SNF4 gene. Chin J Biotech, 2011, 27(4):572-578(in Chinese).
    [36] Donalies UE, Stahl U. Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1. Yeast, 2002, 19(6):475-484.
    [37] Li Y, Dammer EB, Gao Y, et al. Proteomics links ubiquitin chain topology change to transcription factor activation. Mol Cell, 2019, 76(1):126-137.e7.
    [38] Kaiser P, Flick K, Wittenberg C, Reed SI. Regulation of transcription by ubiquitination without proteolysis:Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4. Cell, 2000, 102(3):303-314.
    [39] Cashikar AG, Duennwald M, Lindquist SL. A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J Biol Chem, 2005, 280(25):23869-23875.
    [40] Abrahão J, Mokry DZ, Ramos CHI. Hsp78(78 kDa heat shock protein), a representative AAA family member found in the mitochondrial matrix of Saccharomyces cerevisiae. Front Mol Biosci, 2017, 4:60.
    [41] Needham PG, Patel HJ, Chiosis G, et al. Mutations in the Yeast Hsp70, Ssa1, at P417 alter ATP cycling, interdomain coupling, and specific chaperone functions. J Mol Biol, 2015, 427(18):2948-2965.
    [42] Tsai CJ, Aslam K, Drendel HM, et al. Hsp31 is a stress response chaperone that intervenes in the protein misfolding process. J Biol Chem, 2015, 290(41):24816-24834.
    [43] Grousl T, Ungelenk S, Miller S, et al. A prion-like domain in Hsp42 drives chaperone-facilitated aggregation of misfolded proteins. J Cell Biol, 2018, 217(4):1269-1285.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李招娣,兰秋艳,李衍常,徐聪,常蕾,徐平,段昌柱. 定量蛋白质组学揭示酵母去泛素化酶Ubp14生物学功能[J]. 生物工程学报, 2022, 38(10): 3901-3913

复制
分享
文章指标
  • 点击次数:315
  • 下载次数: 1438
  • HTML阅读次数: 1091
  • 引用次数: 0
历史
  • 收稿日期:2022-03-11
  • 在线发布日期: 2022-10-28
  • 出版日期: 2022-10-25
文章二维码
您是第5992013位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司