13C标记代谢流分析中天然稳定性同位素修正矩阵构建方法及应用
作者:
基金项目:

国家重点研发计划(2019YFA0904300);国家自然科学基金(21776082)


Construction and application of natural stable isotope correction matrix in 13C-labeled metabolic flux analysis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    稳定性同位素13C标记实验是分析细胞代谢流的一种重要手段,主要通过质谱检测胞内代谢物中13C标记的同位素分布,并作为胞内代谢流计算时的约束条件,进而通过代谢流分析算法得到相应代谢网络中的通量分布。然而在自然界中,并非只有C元素存在天然稳定性同位素13C,其他元素如O元素也有其天然稳定性同位素17O、18O等,这使得质谱方法所测得的同位素分布中会夹杂除13C标记之外的其他元素的同位素信息,特别是分子中含有较多其他元素的分子,这将导致很大的实验误差,因此需要在进行代谢流计算前进行质谱数据的矫正。本研究提出了一种基于Python语言的天然同位素修正矩阵的构建方法,用于修正同位素分布测量值中由于天然同位素分布引起的测定误差。文中提出的基本修正矩阵幂方法用于构建各元素修正矩阵,结构简单、易于编码实现,可直接应用于13C代谢流分析软件数据前处理。将该修正方法应用于13C标记的黑曲霉(Aspergillus niger)胞内代谢流分析,结果表明本研究提出的方法准确有效,为准确获取微生物胞内代谢流分析提供了可靠的数据修正方法。

    Abstract:

    Stable isotope 13C labeling is an important tool to analyze cellular metabolic flux. The 13C distribution in intracellular metabolites can be detected via mass spectrometry and used as a constraint in intracellular metabolic flux calculations. Then, metabolic flux analysis algorithms can be employed to obtain the flux distribution in the corresponding metabolic reaction network. However, in addition to carbon, other elements such as oxygen in the nature also have natural stable isotopes (e.g., 17O, 18O). This makes the isotopic information of elements other than the 13C marker interspersed in the isotopic distribution measured by the mass spectrometry, especially that of the molecules containing many other elements, which leads to large errors. Therefore, it is essential to correct the mass spectrometry data before performing metabolic flux calculations. In this paper, we proposed a method for construction of correction matrix based on Python language for correcting the measurement errors due to natural isotope distribution. The method employed a basic power method for constructing the correction matrix with simple structure and easy coding implementation, which can be directly applied to data pre-processing in 13C metabolic flux analysis. The correction method was then applied to the intracellular metabolic flux analysis of 13C-labeled Aspergillus niger. The results showed that the proposed method was accurate and effective, which can serve as a reliable data correction method for accurate microbial intracellular metabolic flux analysis.

    参考文献
    [1] Wiechert W. 13C metabolic flux analysis. Metab Eng, 2001, 3(3):195-206.
    [2] Antoniewicz MR. Methods and advances in metabolic flux analysis:a mini-review. J Ind Microbiol Biotechnol, 2015, 42(3):317-325.
    [3] Dai ZW, Locasale JW. Understanding metabolism with flux analysis:from theory to application. Metab Eng, 2017, 43(Pt B):94-102.
    [4] Antoniewicz MR. 13C metabolic flux analysis:optimal design of isotopic labeling experiments. Curr Opin Biotechnol, 2013, 24(6):1116-1121.
    [5] Niedenführ S, Wiechert W, Nöh K. How to measure metabolic fluxes:a taxonomic guide for 13C fluxomics. Curr Opin Biotechnol, 2015, 34:82-90.
    [6] Wiechert W, Nöh K. Isotopically non-stationary metabolic flux analysis:complex yet highly informative. Curr Opin Biotechnol, 2013, 24(6):979-986.
    [7] Crown SB, Antoniewicz MR. Publishing 13C metabolic flux analysis studies:a review and future perspectives. Metab Eng, 2013, 20:42-48.
    [8] Yasemi M, Jolicoeur M. Modelling cell metabolism:a review on constraint-based steady-state and kinetic approaches. Processes, 2021, 9(2):322.
    [9] Buescher JM, Antoniewicz MR, Boros LG, et al. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr Opin Biotechnol, 2015, 34:189-201.
    [10] Dalman T, Wiechert W, Nöh K. A scientific workflow framework for 13C metabolic flux analysis. J Biotechnol, 2016, 232:12-24.
    [11] Moseley HN. Correcting for the effects of natural abundance in stable isotope resolved metabolomics experiments involving ultra-high resolution mass spectrometry. BMC Bioinformatics, 2010, 11:139.
    [12] Jungreuthmayer C, Neubauer S, Mairinger T, et al. ICT:isotope correction toolbox. Bioinformatics, 2016, 32(1):154-156.
    [13] Millard P, Letisse F, Sokol S, et al. IsoCor:correcting MS data in isotope labeling experiments. Bioinformatics, 2012, 28(9):1294-1296.
    [14] Rosenblatt J, Chinkes D, Wolfe M, et al. Stable isotope tracer analysis by GC-MS, including quantification of isotopomer effects. Am J Physiol, 1992, 263(3 Pt 1):E584-E596.
    [15] Midani FS, Wynn ML, Schnell S. The importance of accurately correcting for the natural abundance of stable isotopes. Anal Biochem, 2017, 520:27-43.
    [16] Niedenführ S, Ten Pierick A, Dam PTV, et al. Natural isotope correction of MS/MS measurements for metabolomics and 13C fluxomics. Biotechnol Bioeng, 2016, 113(5):1137-1147.
    [17] Wang YJ, Parsons LR, Su XY. AccuCor2:isotope natural abundance correction for dual-isotope tracer experiments. Lab Invest, 2021, 101(10):1403-1410.
    [18] Millard P, Letisse F, Sokol S, et al. Correction of MS data for naturally occurring isotopes in isotope labelling experiments. Methods Mol Biol, 2014, 1191:197-207.
    [19] Van Winden WA, Wittmann C, Heinzle E, et al. Correcting mass isotopomer distributions for naturally occurring isotopes. Biotechnol Bioeng, 2002, 80(4):477-479.
    [20] Nilsson R. Validity of natural isotope abundance correction for metabolic flux analysis. Math Biosci, 2020, 330:108481.
    [21] Kwon MJ, Jørgensen TR, Nitsche BM, et al. The transcriptomic fingerprint of glucoamylase over-expression in Aspergillus niger. BMC Genomics, 2012, 13:701.
    [22] Sui YF, Schütze T, Ouyang LM, et al. Engineering cofactor metabolism for improved protein and glucoamylase production in Aspergillus niger. Microb Cell Fact, 2020, 19(1):198.
    [23] 王帅. 产糖化酶菌株黑曲霉在底物和溶解氧浓度波动下的胞内代谢物浓度动态响应规律探究[D]. 上海:华东理工大学, 2019. Wang S. Intracellular dynamic response of glycosylase high yield Aspergillus niger under the concentration gradient of substrates and dissolved oxygen[D]. Shanghai:East China University of Science and Technology, 2019(in Chinese).
    [24] 鲁洪中. 基于13C代谢流和基因组规模代谢网络模型的黑曲霉产糖化酶代谢调控机理研究[D]. 上海:华东理工大学, 2016. Lu HZ. Investigation of metabolic regulation mechanism in enzyme production by Aspergillus niger based on 13C metabolic flux and genome scale metabolic network model[D]. Shanghai:East China University of Science and Technology, 2016(in Chinese).
    [25] Mairinger T, Wegscheider W, Peña DA, et al. Comprehensive assessment of measurement uncertainty in 13C-based metabolic flux experiments. Anal Bioanal Chem, 2018, 410(14):3337-3348.
    引证文献
引用本文

郑世媛,江俊峰,夏建业. 13C标记代谢流分析中天然稳定性同位素修正矩阵构建方法及应用[J]. 生物工程学报, 2022, 38(10): 3940-3955

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-30
  • 在线发布日期: 2022-10-28
  • 出版日期: 2022-10-25
文章二维码
您是第5991984位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司