合成生物学:从“造物致用”到产业转化
作者:

Synthetic biology: from “build-for-use” to commercialization
Author:
  • ZHAO Guoping

    ZHAO Guoping

    Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [73]
  • |
  • 相似文献 [19]
  • | | |
  • 文章评论
    摘要:

    “合成生物学”在生命科学研究中汇聚了工程、物理、化学、数学、计算机等学科的进展,采用工程科学的研究理念,对生物体进行有目标地设计、改造乃至重新合成,甚至创建赋予非自然功能的“人造生命”,推动了从认识生命到设计生命的跨越,正在引领产业技术变革和生物经济可持续发展。本文结合中国科学院天津工业生物技术研究所作为我国合成生物学领域重要代表成立十年来的发展,聚焦“造物致用”,简要回顾和梳理了国内外合成生物学的重要科技进展与产业发展状况,并展望分析了我国合成生物学的未来发展。

    Abstract:

    The convergence of advances in chemistry, physics, mathematics, computer science, and engineering into life science research gives rise to synthetic biology. Synthetic biology adopts the concept and strategy of engineering science research, aiming at redesigning and reprogramming the existing biological systems, designing and constructing new bio-bricks such as enzymatic parts, genetic circuits, and chassis cells, or even creating non-natural functions of “artificial life”. Synthetic biology promotes the leap from understanding of life to design of life, and is revolutionizing biotechnology and sustainable development of bioeconomy. Via this retrospective review of Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, the most representative research entity focusing on “build-for-use” of synthetic biology in China, this article summarizes the important scientific and technological breakthroughs and industry impacts in the past decade, and prospects future development of synthetic biology in China.

    参考文献
    [1] Meng FK, Ellis T. The second decade of synthetic biology: 2010–2020. Nat Commun, 2020, 11(1): 5174.
    [2] Cameron DE, Bashor CJ, Collins JJ. A brief history of synthetic biology. Nat Rev Microbiol, 2014, 12(5): 381-390.
    [3] 罗楠, 赵国屏, 刘陈立. 合成生物学的科学问题. 生命科学, 2021, 33(12): 1429-1435. Luo N, Zhao GP, Liu CL. Scientific questions for synthetic biology. Chin Bull Life Sci, 2021, 33(12): 1429-1435(in Chinese).
    [4] 赵国屏. 合成生物学: 开启生命科学“会聚”研究新时代. 中国科学院院刊, 2018, 33(11): 1135-1149. Zhao GP. Synthetic biology: unsealing the convergence era of life science research. Bull Chin Acad Sci, 2018, 33(11): 1135-1149(in Chinese).
    [5] Garner KL. Principles of synthetic biology. Essays Biochem, 2021, 65(5): 791-811.
    [6] Elowitz M, Lim WA. Build life to understand it. Nature, 2010, 468(7326): 889-890.
    [7] Eslami M, Adler A, Caceres RS, et al. Artificial intelligence for synthetic biology. Commun ACM, 2022, 65(5): 88-97.
    [8] Camacho DM, Collins KM, Powers RK, et al. Next-generation machine learning for biological networks. Cell, 2018, 173(7): 1581-1592.
    [9] Clarke L, Kitney R. Developing synthetic biology for industrial biotechnology applications. Biochem Soc Trans, 2020, 48(1): 113-122.
    [10] Tan X, Letendre JH, Collins JJ, et al. Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics. Cell, 2021, 184(4): 881-898.
    [11] Shi SB, Wang ZH, Shen LR, et al. Synthetic biology: a new frontier in food production. Trends Biotechnol, 2022, 40(7): 781-803.
    [12] Rylott EL, Bruce NC. How synthetic biology can help bioremediation. Curr Opin Chem Biol, 2020, 58: 86-95.
    [13] 赵国屏. 助推合成生物学会聚研究、提升中华民族科技创新能力——《合成生物学》创刊有感. 合成生物学, 2020, 1(1): 1-3. Zhao GP. Promoting the convergence of synthetic biology research and enhancing the scientific and technological innovation capacity of China-a few words for the inaugural issue of Synthetic Biology Journal. Synth Biol J, 2020, 1(1): 1-3(in Chinese).
    [14] 李雷, 姜卫红, 覃重军, 等. 合成生物学使能技术的研究进展. 中国科学: 生命科学, 2015, 45(10): 950-968. Li L, Jiang WH, Qin ZJ, et al. Recent advances in the enabling technologies for synthetic biology. Sci Sin Vitae, 2015, 45(10): 950-968(in Chinese).
    [15] Shimizu H, Matsuda F. Editorial overview: recent progress in analytical technologies for design-build-test-learn cycle in biotechnology. Curr Opin Biotechnol, 2018, 54: 145-147.
    [16] Simon AJ, D’Oelsnitz S, Ellington AD. Synthetic evolution. Nat Biotechnol, 2019, 37(7): 730-743.
    [17] Hillson N, Caddick M, Cai Y, et al. Building a global alliance of biofoundries. Nat Commun, 2019, 10: 2040.
    [18] 赵国屏. 行至半山坡更陡认识合成生物学发展的关键节点. 生命科学, 2021, 33(12): 1427-1428. Zhao GP. The walk to the halfway hill is steeper recognizing the key nodes in the development of synthetic biology. Chin Bull Life Sci, 2021, 33(12): 1427-1428(in Chinese).
    [19] 张媛媛, 曾艳, 王钦宏. 合成生物制造进展. 合成生物学, 2021, 2(2): 145-160. Zhang YY, Zeng Y, Wang QH. Advances in synthetic biomanufacturing. Synth Biol J, 2021, 2(2): 145-160(in Chinese).
    [20] Engineering Biology: a Research Roadmap for the Next-Generation Bioeconomy. California: EBRC, 2019.
    [21] 马悦, 汪哲, 薛淮, 等. 中英美三国合成生物学科技规划和产业发展比较分析. 生命科学, 2021, 33(12): 1560-1566. Ma Y, Wang Z, Xue H, et al. Comparative analysis of scientific and technological strategic planning and industrial development of synthetic biology among China, Britain and America. Chin Bull Life Sci, 2021, 33(12): 1560-1566(in Chinese).
    [22] 张先恩. 中国合成生物学发展回顾与展望. 中国科学: 生命科学, 2019, 49(12): 1543-1572. Zhang XN. Synthetic biology in China: review and prospects. Sci Sin Vitae, 2019, 49(12): 1543-1572(in Chinese).
    [23] 赵国屏. 合成生物学的科学内涵和社会意义——合成生物学专刊序言. 生命科学, 2011, 23(9): 825. Zhao GP. The scientific connotations and social implications of synthetic biology. Chin Bull Life Sci, 2011, 23(9): 825(in Chinese).
    [24] 邓子新. 合成生物学趁最好时代, 建物致知, 建物致用. 生命科学, 2019, 31(4): 323-324. Deng ZX. Synthetic biology takes advantage of the best times: build to understand and build to use. Chin Bull Life Sci, 2019, 31(4): 323-324(in Chinese).
    [25] 赵国屏. 合成生物学——革命性的新兴交叉学科, “会聚”研究范式的典型. 中国科学: 生命科学, 2015, 45(10): 905-908. Zhao GP. Synthetic biology-the revolutionized emerging interdiscipline and typical convergence research paradigm. Sci Sin Vitae, 2015, 45(10): 905-908(in Chinese).
    [26] 王晓梅, 杨小薇, 李辉尚, 等. 全球合成生物学发展现状及对我国的启示. 生物技术通报, 2022: 1-11. Wang XM, Yang XW, Li HS, et al. Strategic development route of synthetic biology in globe and its enlightenment. Biotechnol Bull, 2022: 1-11(in Chinese).
    [27] Synthetic biology UK: a decade of rapid progress. London: Synthetic Biology Leadership Council, 2020.
    [28] Voigt CA. Synthetic biology 2020–2030: six commercially-available products that are changing our world. Nat Commun, 2020, 11(1): 6379.
    [29] Shendure J, Balasubramanian S, Church GM, et al. DNA sequencing at 40: past, present and future. Nature, 2017, 550(7676): 345-353.
    [30] Venter JC, Glass JI, Hutchison CA 3rd, et al. Synthetic chromosomes, genomes, viruses, and cells. Cell, 2022, 185(15): 2708-2724.
    [31] Schmid B, Zeller S. Faculty opinions recommendation of creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329(5987): 52-56.
    [32] Hutchison CA 3rd, Chuang RY, Noskov VN, et al. Design and synthesis of a minimal bacterial genome. Science, 2016, 351(6280): aad6253.
    [33] Pelletier JF, Sun LJ, Wise KS, et al. Genetic requirements for cell division in a genomically minimal cell. Cell, 2021, 184(9): 2430-2440.e16.
    [34] Kan SBJ, Huang X, Gumulya Y, et al. Genetically programmed chiral organoborane synthesis. Nature, 2017, 552(7683): 132-136.
    [35] Kan SBJ, Lewis RD, Chen K, et al. Directed evolution of cytochrome c for carbon-silicon bond formation: bringing silicon to life. Science, 2016, 354(6315): 1048-1051.
    [36] Hoshika S, Leal NA, Kim MJ, et al. Hachimoji DNA and RNA: a genetic system with eight building blocks. Science, 2019, 363(6429): 884-887.
    [37] Lanitis E, Coukos G, Irving M. All systems go: converging synthetic biology and combinatorial treatment for CAR-T cell therapy. Curr Opin Biotechnol, 2020, 65: 75-87.
    [38] Ledford H. CRISPR gene therapy shows promise against blood diseases. Nature, 2020, 588(7838): 383.
    [39] Meadows AL, Hawkins KM, Tsegaye Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature, 2016, 537(7622): 694-697.
    [40] 刘延峰, 周景文, 刘龙, 等. 合成生物学与食品制造. 合成生物学, 2020, 1(1): 84-91. Liu YF, Zhou JW, Liu L, et al. Synthetic biology and food manufacturing. Synth Biol J, 2020, 1(1): 84-91(in Chinese).
    [41] Zhu XX, Liu XN, Liu T, et al. Synthetic biology of plant natural products: from pathway elucidation to engineered biosynthesis in plant cells. Plant Commun, 2021, 2(5): 100229.
    [42] List of synthetic biology companies[EB/OL]. [2022-10-12]. https://golden.com/query/list-of-synthetic-biology-companies-XKB.
    [43] 4Q 2021 synthetic biology venture investment report[EB/OL]. [2022-10-12]. https://www.synbiobeta.com/read/4q-2021-synthetic-biology-venture-investment-report.
    [44] The Bio Revolution: innovations transforming economies, societies, and our lives[EB/OL]. [2022-10-12]. https://www.mckinsey.com/industries/life-sciences/our-insights/the-bio-revolution-innovations-transforming-economies-societies-and-our-lives.
    [45] Richardson SM, Mitchell LA, Stracquadanio G, et al. Design of a synthetic yeast genome. Science, 2017, 355(6329): 1040-1044.
    [46] Shao Y, Lu N, Wu Z, et al. Creating a functional single-chromosome yeast. Nature, 2018, 560(7718): 331-335.
    [47] Cai T, Sun HB, Qiao J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 2021, 373(6562): 1523-1527.
    [48] Huang B, Xu Y, Hu XH, et al. A backbone-centred energy function of neural networks for protein design. Nature, 2022, 602(7897): 523-528.
    [49] 戴住波, 王勇, 周志华, 等. 植物天然产物合成生物学研究. 中国科学院院刊, 2018, 33(11): 1228-1238. Dai ZB, Wang Y, Zhou ZH, et al. Synthetic biology for production of plant-derived natural products. Bull Chin Acad Sci, 2018, 33(11): 1228-1238(in Chinese).
    [50] 孙文涛, 李春. 微生物合成植物天然产物的细胞工厂设计与构建. 化工进展, 2021, 40(3): 1202-1214. Sun WT, Li C. Design and construction of microbial cell factory for biosynthesis of plant natural products. Chem Ind Eng Prog, 2021, 40(3): 1202-1214(in Chinese).
    [51] 王勇. 新本草计划——基于合成生物学的药用植物活性代谢物研究. 生物工程学报, 2017, 33(3): 478-485. Wang Y. New materia medica project: synthetic biology based bioactive metabolites research in medicinal plant. Chin J Biotech, 2017, 33(3): 478-485(in Chinese).
    [52] French KE. Harnessing synthetic biology for sustainable development. Nat Sustain, 2019, 2(4): 250-252.
    [53] 曾艳, 赵心刚, 周桔. 合成生物学工业应用的现状和展望. 中国科学院院刊, 2018, 33(11): 1211-1217. Zeng Y, Zhao XG, Zhou J. Current situations and perspectives of industrial applications of synthetic biology. Bull Chin Acad Sci, 2018, 33(11): 1211-1217(in Chinese).
    [54] Zhu XN, Tan ZG, Xu HT, et al. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metab Eng, 2014, 24: 87-96.
    [55] 李金根, 刘倩, 刘德飞, 等. 丝状真菌代谢工程研究进展. 生物工程学报, 2021, 37(5): 1637-1658. Li JG, Liu Q, Liu DF, et al. Advances in metabolic engineering of filamentous fungi. Chin J Biotech, 2021, 37(5): 1637-1658(in Chinese).
    [56] 任杰, 曾安平. 基于二氧化碳的生物制造:从基础研究到工业应用的挑战. 合成生物学, 2021, 2(6): 854-862. Ren J, Zeng AP. CO2 based biomanufacturing: from basic research to industrial application. Synth Biol J, 2021, 2(6): 854-862(in Chinese).
    [57] Li XB, Zhu YM, Zeng Y, et al. Overexpression of d-psicose 3-epimerase from Clostridium cellulolyticum H10 in Bacillus subtilis and its prospect for d-psicose production. Adv J Food Sci Technol, 2013, 5(3): 264-269.
    [58] Men Y, Zhu YM, Zhang LL, et al. Enzymatic conversion of d-galactose to d-tagatose: cloning, overexpression and characterization of l-arabinose isomerase from Pediococcus pentosaceus PC-5. Microbiol Res, 2014, 169(2/3): 171-178.
    [59] Tong S, An KX, Chen WX, et al. Evasion of Cas9 toxicity to develop an efficient genome editing system and its application to increase ethanol yield in Fusarium venenatum TB01. Appl Microbiol Biotechnol, 2022, 106(19/20): 6583-6593.
    [60] 崔金明, 王力为, 常志广, 等. 合成生物学的医学应用研究进展. 中国科学院院刊, 2018, 33(11): 1218-1227. Cui JM, Wang LW, Chang ZG, et al. Progress of synthetic biology research in medical applications. Bull Chin Acad Sci, 2018, 33(11): 1218-1227(in Chinese).
    [61] Liu Y, Zeng Y, Liu L, et al. Synthesizing AND gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells. Nat Commun, 2014, 5: 5393.
    [62] Liu Y, Zhan Y, Chen Z, et al. Directing cellular information flow via CRISPR signal conductors. Nat Methods, 2016, 13(11): 938-944.
    [63] Huang HY, Liu YQ, Liao WX, et al. Oncolytic adenovirus programmed by synthetic gene circuit for cancer immunotherapy. Nat Commun, 2019, 10(1): 4801.
    [64] Shao JW, Xue S, Yu GL, et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci Transl Med, 2017, 9(387): eaal2298.
    [65] Yu GL, Zhang ML, Gao L, et al. Far-red light-activated human islet-like designer cells enable sustained fine-tuned secretion of insulin for glucose control. Mol Ther, 2022, 30(1): 341-354.
    [66] 林敏, 姚斌. 加强合成生物技术创新,引领现代农业跨越发展. 生物技术进展, 2022, 12(3): 321-324. Lin M, Yao B. Strengthening innovation in synthetic biotechnology and leading the leapfrog development of modern agriculture. Curr Biotechnol, 2022, 12(3): 321-324(in Chinese).
    [67] Gao CX. Genome engineering for crop improvement and future agriculture. Cell, 2021, 184(6): 1621-1635.
    [68] Chen JH, Chen ST, He NY, et al. Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield. Nat Plants, 2020, 6(5): 570-580.
    [69] Zhang H, Zhou JF, Kan Y, et al. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science, 2022, 376(6599): 1293-1300.
    [70] 燕永亮, 田长富, 杨建国, 等. 人工高效生物固氮体系创建及其农业应用. 生命科学, 2021, 33(12): 1532-1543. Yan YL, Tian CF, Yang JG, et al. Establishment of artificial efficiency biological nitrogen fixation system and its agricultural application. Chin Bull Life Sci, 2021, 33(12): 1532-1543(in Chinese).
    [71] Hadley Kershaw E, Hartley S, McLeod C, et al. The sustainable path to a circular bioeconomy. Trends Biotechnol, 2021, 39(6): 542-545.
    [72] Hodgson A, Futures S, Maxon M, et al. The U.S. Bioeconomy: charting a course for a resilient and competitive future[EB/OL]. [2022-10-16]. https://www.schmidtfutures.com/our-work/task-force-on-synthetic-biology-and-the-bioeconomy/
    [73] 丁明珠, 李炳志, 王颖, 等. 合成生物学重要研究方向进展. 合成生物学, 2020, 1(1): 7-28. Ding MZ, Li BZ, Wang Y, et al. Significant research progress in synthetic biology. Synth Biol J, 2020, 1(1): 7-28(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵国屏. 合成生物学:从“造物致用”到产业转化[J]. 生物工程学报, 2022, 38(11): 4001-4011

复制
分享
文章指标
  • 点击次数:1007
  • 下载次数: 3701
  • HTML阅读次数: 2006
  • 引用次数: 0
历史
  • 收稿日期:2022-10-18
  • 最后修改日期:2022-10-21
  • 在线发布日期: 2022-11-23
  • 出版日期: 2022-11-25
文章二维码
您是第5985017位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司