数字细胞模型的研究及应用
作者:
基金项目:

国家重点研发计划 (2018YFA0900300);中国科学院国际大科学合作计划 (153D31KYSB20170121);国家自然科学基金 (21908239);天津市合成生物技术创新能力提升行动项目 (TSBICIP-PTJS-001)


Digital cell models and their applications: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [75]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    组学分析技术的发展推动生物学逐渐成为一门以数据分析为中心的科学。依托生物数据在细胞整体系统水平建立数字细胞模型,对于理解细胞系统组织原理和生命产生进化规律,预测各种环境和基因扰动对细胞功能的影响并指导设计人工生命具有重要意义,因此数字细胞的构建模拟设计已成为合成生物学的核心研究内容与底层支撑技术。本文重点对天津工业生物技术研究所创立十年来在数字细胞研究方面的进展进行回顾介绍,重点包括基因组尺度代谢网络模型的构建、质控以及其在途径设计和指导菌种代谢工程改造方面的应用,进一步结合近年来细胞模型研究的前沿趋势,对整合多种约束的模型的构建和分析研究方面的最新成果进行了介绍,最后对数字细胞研究的未来发展方向进行展望。数字细胞技术将与基因组测序、合成和编辑等合成生物学前沿技术一起提升人们对生命进行读写改创的能力。

    Abstract:

    Various omics technologies are changing Biology into a data-driven science subject. Development of data-driven digital cell models is key for understanding system level organization and evolution principles of life, as well as for predicting cellular function under various environmental/genetic perturbations and subsequently for the design of artificial life. Consequently, the construction, analysis and design of digital cell models have become one of the core supporting technologies in synthetic biology. This paper summarized the research progress on digital cell models in the last ten years after the foundation of Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, with a focus on the development and quality control of genome-scale metabolic network for reliable metabolic pathway design and their application in guiding strain metabolic engineering. We also introduced the latest progress on developing cellular models with multiple constraints to improve prediction accuracy. At last, we briefly discussed the current challenges and future directions in digital cell model development. We believe that digital cell technology, along with genome sequencing, genome synthesis and genome editing, will greatly improve our ability in reading, writing, modifying and creating life.

    参考文献
    [1] 张媛媛, 曾艳, 王钦宏. 合成生物制造进展. 合成生物学, 2021, 2(2): 145-160. Zhang YY, Zeng Y, Wang QH. Advances in synthetic biomanufacturing. Syn Biol J, 2021, 2(2): 145-160(in Chinese).
    [2] Fang X, Lloyd CJ, Palsson BO. Reconstructing organisms in silico: genome-scale models and their emerging applications. Nat Rev Microbiol, 2020, 18(12): 731-743.
    [3] Gu CD, Kim GB, Kim WJ, et al. Current status and applications of genome-scale metabolic models. Genome Biol, 2019, 20(1): 121.
    [4] 郝彤, 马红武, 赵学明. 基因组尺度代谢网络自动重构及分析工具研究进展. 生物工程学报, 2012, 28(6): 661-670. Hao T, Ma HW, Zhao XM. Progress in automatic reconstruction and analysis tools of genome-scale metabolic network. Chin J Biotech, 2012, 28(6): 661-670(in Chinese).
    [5] Machado D, Herrgård M. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol, 2014, 10(4): e1003580.
    [6] 王雪亮, 张芸, 温廷益. 整合组学数据的代谢网络模型研究进展. 科学通报, 2021, 66(19): 2393-2404. Wang XL, Zhang Y, Wen TY. Progress on genome-scale metabolic models integrated with multi-omics data. Chin Sci Bull, 2021, 66(19): 2393-2404(in Chinese).
    [7] 杨雪, 张培基, 毛志涛, 等. 多约束代谢网络模型的研究进展. 生物工程学报, 2022, 38(2): 531-545. Yang X, Zhang PJ, Mao ZT, et al. Development of metabolic models with multiple constraints: a review. Chin J Biotech, 2022, 38(2): 531-545(in Chinese).
    [8] 虞思倩, 夏建业, 庄英萍. 基于热力学原理约束的代谢网络模型研究进展及其应用. 中国生物工程杂志, 2022, 42(1/2): 128-138. Yu SQ, Xia JY, Zhuang YP. Research progress and application of metabolic network model constrained by thermodynamic principles. China Biotechnol, 2022, 42(1/2): 128-138(in Chinese).
    [9] Lerman JA, Hyduke DR, Latif H, et al. In silico method for modelling metabolism and gene product expression at genome scale. Nat Commun, 2012, 3: 929.
    [10] O’Brien EJ, Lerman JA, Chang RL, et al. Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol Syst Biol, 2013, 9: 693.
    [11] 袁倩倩, 李斐然, 罗浩, 等. 由代谢网络分析发现菌种代谢工程改造新策略. 化工进展, 2017, 36(12): 4592-4600. Yuan QQ, Li FR, Luo H, et al. Discovery of new strain modification strategies by metabolic network analysis. Chem Ind Eng Prog, 2017, 36(12): 4592-4600(in Chinese).
    [12] Yuan QQ, Huang T, Li PS, et al. Pathway-consensus approach to metabolic network reconstruction for Pseudomonas putida KT2440 by systematic comparison of published models. PLoS One, 2017, 12(1): e0169437.
    [13] Luo JH, Yuan QQ, Mao YF, et al. Reconstruction of a genome-scale metabolic network for Shewanella oneidensis MR-1 and analysis of its metabolic potential for bioelectrochemical systems. Front Bioeng Biotechnol, 2022, 10: 913077.
    [14] Liu DF, Xu ZX, Li JG, et al. Reconstruction and analysis of genome-scale metabolic model for thermophilic fungus Myceliophthora thermophila. Biotech & Bioengineering, 2022, 119(7): 1926-1937.
    [15] Guo YF, Su LQ, Liu Q, et al. Dissecting carbon metabolism of Yarrowia lipolytica type strain W29 using genome-scale metabolic modelling. Comput Struct Biotechnol J, 2022, 20: 2503-2511.
    [16] Li FR, Xie W, Yuan QQ, et al. Genome-scale metabolic model analysis indicates low energy production efficiency in marine ammonia-oxidizing archaea. AMB Express, 2018, 8(1): 1-12.
    [17] Thiele I, Palsson BØ. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc, 2010, 5(1): 93-121.
    [18] Heirendt L, Arreckx S, Pfau T, et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat Protoc, 2019, 14(3): 639-702.
    [19] Seaver SMD, Liu F, Zhang QZ, et al. The ModelSEED biochemistry database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res, 2021, 49(D1): D1555.
    [20] Agren R, Liu LM, Shoaie S, et al. The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol, 2013, 9(3): e1002980.
    [21] Dias O, Rocha M, Ferreira EC, et al. Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Res, 2015, 43(8): 3899-3910.
    [22] Viana R, Dias O, Lagoa D, et al. Genome-scale metabolic model of the human pathogen Candida albicans: a promising platform for drug target prediction. JoF, 2020, 6(3): 171.
    [23] Dias O, Saraiva J, Faria C, et al. iDS372, a phenotypically reconciled model for the metabolism of Streptococcus pneumoniae strain R6. Front Microbiol, 2019, 10: 1283.
    [24] Capela J, Lagoa D, Rodrigues R, et al. Merlin, an improved framework for the reconstruction of high-quality genome-scale metabolic models. Nucleic Acids Res, 2022, 50: 6052-6066.
    [25] Ye C, Qiao WH, Yu XB, et al. Reconstruction and analysis of the genome-scale metabolic model of Schizochytrium limacinum SR21 for docosahexaenoic acid production. BMC Genom, 2015, 16(1): 1-11.
    [26] Ye C, Xu N, Chen HQ, et al. Reconstruction and analysis of a genome-scale metabolic model of the oleaginous fungus Mortierella alpina. BMC Syst Biol, 2015, 9(1): 1-11.
    [27] Mei J, Xu N, Ye C, et al. Reconstruction and analysis of a genome-scale metabolic network of Corynebacterium glutamicum S9114. Gene, 2016, 575(2): 615-622.
    [28] Zhang Y, Cai JY, Shang XL, et al. A new genome-scale metabolic model of Corynebacterium glutamicum and its application. Biotechnol Biofuels, 2017, 10: 169.
    [29] Pan PC, Hua Q. Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica. PLoS One, 2012, 7(12): e51535.
    [30] Huang D, Li SS, Xia ML, et al. Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement. Microb Cell Fact, 2013, 12: 52.
    [31] Dang LQ, Liu J, Wang C, et al. Enhancement of rapamycin production by metabolic engineering in Streptomyces hygroscopicus based on genome-scale metabolic model. J Ind Microbiol Biotechnol, 2017, 44(2): 259-270.
    [32] Lieven C, Beber ME, Olivier BG, et al. MEMOTE for standardized genome-scale metabolic model testing. Nat Biotechnol, 2020, 38(3): 272-276.
    [33] Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol, 2010, 28(3): 245-248.
    [34] Liu J, Liu MS, Shi T, et al. CRISPR-assisted rational flux-tuning and arrayed CRISPRi screening of an l-proline exporter for l-proline hyperproduction. Nat Commun, 2022, 13(1): 1-16.
    [35] Lin ZQ, Zhang Y, Yuan QQ, et al. Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production viathreonine bypass. Microb Cell Factories, 2015, 14(1): 1-12.
    [36] Bogorad IW, Chen CT, Theisen MK, et al. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle. PNAS, 2014, 111(45): 15928-15933.
    [37] Yang XY, Yuan QQ, Zheng YY, et al. An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli. Biotechnol Lett, 2016, 38(8): 1359-1365.
    [38] Zheng YY, Yuan QQ, Luo H, et al. Engineering NOG-pathway in Escherichia coli for poly-(3-hydroxybutyrate) production from low cost carbon sources. Bioengineered, 2018, 9(1): 209-213.
    [39] Meadows AL, Hawkins KM, Tsegaye Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature, 2016, 537(7622): 694-697.
    [40] Yang X, Yuan QQ, Luo H, et al. Systematic design and in vitro validation of novel one-carbon assimilation pathways. Metab Eng, 2019, 56: 142-153.
    [41] Mao YF, Yuan QQ, Yang X, et al. Non-natural aldol reactions enable the design and construction of novel one-carbon assimilation pathways in vitro. Front Microbiol, 2021, 12: 677596.
    [42] Cai T, Sun HB, Qiao J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 2021, 373(6562): 1523-1527.
    [43] Price ND, Reed JL, Palsson BØ. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol, 2004, 2(11): 886-897.
    [44] Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet, 2012, 13(4): 227-232.
    [45] Becker SA, Palsson BO. Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol, 2008, 4(5): e1000082.
    [46] Zur H, Ruppin E, Shlomi T. iMAT: an integrative metabolic analysis tool. Bioinformatics, 2010, 26(24): 3140-3142.
    [47] Collins SB, Reznik E, Segrè D. Temporal expression-based analysis of metabolism. PLoS Comput Biol, 2012, 8(11): e1002781.
    [48] Colijn C, Brandes A, Zucker J, et al. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol, 2009, 5(8): e1000489.
    [49] Mao ZT, Ma HW. iMTBGO: an algorithm for integrating metabolic networks with transcriptomes based on gene ontology analysis. Curr Genomics, 2019, 20(4): 252-259.
    [50] Bekiaris PS, Klamt S. Automatic construction of metabolic models with enzyme constraints. BMC Bioinformatics, 2020, 21(1): 19.
    [51] Beg QK, Vazquez A, Ernst J, et al. Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. PNAS, 2007, 104(31): 12663-12668.
    [52] Lerman JA, Hyduke DR, Latif H, et al. In silico method for modelling metabolism and gene product expression at genome scale. Nat Commun, 2012, 3: 929.
    [53] Adadi R, Volkmer B, Milo R, et al. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters. PLoS Comput Biol, 2012, 8(7): e1002575.
    [54] Sánchez BJ, Zhang C, Nilsson A, et al. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol Syst Biol, 2017, 13(8): 935.
    [55] Zhou JR, Zhuang YP, Xia JY. Integration of enzyme constraints in a genome-scale metabolic model of Aspergillus niger improves phenotype predictions. Microb Cell Fact, 2021, 20(1): 125.
    [56] Mao ZT, Zhao X, Yang X, et al. ECMpy, a simplified workflow for constructing enzymatic constrained metabolic network model. Biomolecules, 2022, 12(1): 65.
    [57] Niu JH, Mao ZT, Mao YF, et al. Construction and analysis of an enzyme-constrained metabolic model of Corynebacterium glutamicum. Biomolecules, 2022, 12(10): 1499.
    [58] Ye C, Luo QL, Guo L, et al. Improving lysine production through construction of an Escherichia coli enzyme-constrained model. Biotechnol Bioeng, 2020, 117(11): 3533-3544.
    [59] Massaiu I, Pasotti L, Sonnenschein N, et al. Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains. Microb Cell Fact, 2019, 18(1): 3.
    [60] Xu ZX, Sun JB, Wu QQ, et al. Find_tfSBP: find thermodynamics-feasible and smallest balanced pathways with high yield from large-scale metabolic networks. Sci Rep, 2017, 7(1): 17334.
    [61] Salvy P, Hatzimanikatis V. The ETFL formulation allows multi-omics integration in thermodynamics- compliant metabolism and expression models. Nat Commun, 2020, 11(1): 30.
    [62] Yang X, Mao ZT, Zhao X, et al. Integrating thermodynamic and enzymatic constraints into genome-scale metabolic models. Metab Eng, 2021, 67: 133-144.
    [63] Hart WE, Watson JP, Woodruff DL. Pyomo: modeling and solving mathematical programs in Python. Math Program Comput, 2011, 3(3): 219-260.
    [64] Charlier D, Bervoets I. Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli. Amino Acids, 2019, 51(8): 1103-1127.
    [65] Utagawa T. Production of arginine by fermentation. J Nutr, 2004, 134(10): 2854S-2857S.
    [66] Wang Y, Cheng HJ, Liu Y, et al. In-situ generation of large numbers of genetic combinations for metabolic reprogramming viaCRISPR-guided base editing. Nat Commun, 2021, 12(1): 1-12.
    [67] Lu XY, Liu YW, Yang YQ, et al. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design. Nat Commun, 2019, 10(1): 1-10.
    [68] Guo J, Man ZW, Rao ZM, et al. Improvement of the ammonia assimilation for enhancing l-arginine production of Corynebacterium crenatum. J Ind Microbiol Biotechnol, 2017, 44(3): 443-451.
    [69] Karr JR, Sanghvi JC, Macklin DN, et al. A whole-cell computational model predicts phenotype from genotype. Cell, 2012, 150(2): 389-401.
    [70] Ye C, Xu N, Gao C, et al. Comprehensive understanding of Saccharomyces cerevisiae phenotypes with whole-cell model WM_S288C. Biotechnol Bioeng, 2020, 117(5): 1562-1574.
    [71] Pelletier JF, Sun LJ, Wise KS, et al. Genetic requirements for cell division in a genomically minimal cell. Cell, 2021, 184(9): 2430-2440.
    [72] Gao YJ, Yuan QQ, Mao ZT, et al. Global connectivity in genome-scale metabolic networks revealed by comprehensive FBA-based pathway analysis. BMC Microbiol, 2021, 21(1): 292.
    [73] Liao XP, Ma HW, Tang YJ. Artificial intelligence: a solution to involution of design-build-test-learn cycle. Curr Opin Biotechnol, 2022, 75: 102712.
    [74] Li F, Yuan L, Lu H, et al. Deep learning-based kcat prediction enables improved enzyme-constrained model reconstruction. Nat Catal, 2022, 5(8): 662-672.
    [75] Hon MK, Mohamad MS, Mohamed Salleh AH, et al. Identifying a gene knockout strategy using a hybrid of simple constrained artificial bee colony algorithm and flux balance analysis to enhance the production of succinate and lactate in Escherichia coli. Interdiscip Sci Comput Life Sci, 2019, 11(1): 33-44.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

袁倩倩,毛志涛,杨雪,廖小平,马红武. 数字细胞模型的研究及应用[J]. 生物工程学报, 2022, 38(11): 4146-4161

复制
分享
文章指标
  • 点击次数:842
  • 下载次数: 2031
  • HTML阅读次数: 2161
  • 引用次数: 0
历史
  • 收稿日期:2022-07-28
  • 最后修改日期:2022-10-25
  • 在线发布日期: 2022-11-23
  • 出版日期: 2022-11-25
文章二维码
您是第5992013位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司