半理性设计进化土曲霉来源的ω-转氨酶AtTA热稳定性
作者:
基金项目:

国家自然科学基金(32071268);宁波市“科技创新 2025”重大专项(2020Z080)


Semi-rational evolution of ω-transaminase from Aspergillus terreus for enhancing the thermostability
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    ω-转氨酶(ω-transaminase, ω-TA)作为一种天然的生物催化剂,在手性胺类化合物的合成中具有较好的应用前景。但ω-TA在催化非天然底物的反应过程中存在稳定性差、活性低的缺陷,大大限制了ω-TA的应用。为改善此缺陷,针对来源于土曲霉(Aspergillus terreus)的(R)-ω-TA (AtTA),采用基于分子动力学模拟的计算机辅助设计与随机突变、组合突变相结合的策略进行酶的热稳定性改造,获得了热稳定性与活性同步提高的最佳突变酶AtTA-E104D/A246V/R266Q (M3)。与AtTA野生酶(wild-type, WT)相比,M3的半衰期t1/2 (35 ℃)由17.8 min提升至102.7 min,提升了4.8倍,半失活温度T1050比WT (38.1 ℃)提高2.2 ℃。最佳突变酶M3对丙酮酸和1-(R)-苯乙胺的催化效率分别是野生酶的1.59倍和1.56倍。分子动力学模拟与分子对接结果表明,分子内氢键与疏水相互作用的增加所导致α-螺旋的加固稳定是酶热稳定性提升的主要原因;底物分子与结合口袋氨基酸之间氢键相互作用的增加以及底物结合口袋体积的增大是导致M3催化效率提升的主要原因。底物谱测定结果表明,相较于WT,M3对11种芳香酮类化合物的催化性能均有所提升,进一步说明M3对手性胺的合成具有更高的应用价值。

    Abstract:

    ω-transaminase (ω-TA) is a natural biocatalyst that has good application potential in the synthesis of chiral amines. However, the poor stability and low activity of ω-TA in the process of catalyzing unnatural substrates greatly hampers its application. To overcome these shortcomings, the thermostability of (R)-ω-TA (AtTA) from Aspergillus terreus was engineered by combining molecular dynamics simulation assisted computer-aided design with random and combinatorial mutation. An optimal mutant AtTA-E104D/A246V/R266Q (M3) with synchronously enhanced thermostability and activity was obtained. Compared with the wild- type (WT) enzyme, the half-life t1/2 (35 ℃) of M3 was prolonged by 4.8-time (from 17.8 min to 102.7 min), and the half deactivation temperature (T1050) was increased from 38.1 ℃ to 40.3 ℃. The catalytic efficiencies toward pyruvate and 1-(R)-phenylethylamine of M3 were 1.59- and 1.56-fold that of WT. Molecular dynamics simulation and molecular docking showed that the reinforced stability of α-helix caused by the increase of hydrogen bond and hydrophobic interaction in molecules was the main reason for the improvement of enzyme thermostability. The enhanced hydrogen bond of substrate with surrounding amino acid residues and the enlarged substrate binding pocket contributed to the increased catalytic efficiency of M3. Substrate spectrum analysis revealed that the catalytic performance of M3 on 11 aromatic ketones were higher than that of WT, which further showed the application potential of M3 in the synthesis of chiral amines.

    参考文献
    [1] VITAKU E, SMITH DT, NJARDARSON JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals[J]. Journal of Medicinal Chemistry, 2014, 57(24): 10257-10274.
    [2] FUCHS M, FARNBERGER JE, KROUTIL W. The industrial age of biocatalytic transamination[J]. European Journal of Organic Chemistry, 2015, 2015(32): 6965-6982.
    [3] KOHLS H, STEFFEN-MUNSBERG F, HÖHNE M. Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis[J]. Current Opinion in Chemical Biology, 2014, 19: 180-192.
    [4] BOMMARIUS AS. Amine dehydrogenases occur in nature[J]. Nature Catalysis, 2019, 2(4): 288-289.
    [5] GHISLIERI D, TURNER NJ. Biocatalytic approaches to the synthesis of enantiomerically pure chiral amines[J]. Topics in Catalysis, 2014, 57(5): 284-300.
    [6] GAO GR, DU SZ, YANG Y, LEI X, HUANG HZ, CHANG MX. Direct asymmetric reductive amination for the synthesis of (S)-rivastigmine[J]. Molecules, 2018, 23(9): 2207.
    [7] SAVILE CK, JANEY JM, MUNDORFF EC, MOORE JC, TAM S, JARVIS WR, COLBECK JC, KREBBER A, FLEITZ FJ, BRANDS J, DEVINE PN, HUISMAN GW, HUGHES GJ. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture[J]. Science, 2010, 329(5989): 305-309.
    [8] MARX L, RÍOS-LOMBARDÍA N, FARNBERGER JF, KROUTIL W, BENÍTEZ-MATEOS AI, LÓPEZ- GALLEGO F, MORÍS F, GONZÁLEZ-SABÍN J, BERGLUND P. Chemoenzymatic approaches to the synthesis of the calcimimetic agent cinacalcet employing transaminases and ketoreductases[J]. Advanced Synthesis & Catalysis, 2018, 360(11): 2157-2165.
    [9] ABRAHAMSON MJ, VÁZQUEZ-FIGUEROA E, WOODALL NB, MOORE JC, BOMMARIUS AS. Development of an amine dehydrogenase for synthesis of chiral amines[J]. Angewandte Chemie International Edition, 2012, 51(16): 3969-3972.
    [10] GHISLIERI D, GREEN AP, PONTINI M, WILLIES SC, ROWLES I, FRANK A, GROGAN G, TURNER NJ. Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products[J]. Journal of the American Chemical Society, 2013, 135(29): 10863-10869.
    [11] LI H, LUAN ZJ, ZHENG GW, XU JH. Efficient synthesis of chiral indolines using an imine reductase from Paenibacillus lactis[J]. Advanced Synthesis & Catalysis, 2015, 357(8): 1692-1696.
    [12] JONGKIND EPJ, FOSSEY-JOUENNE A, MAYOL O, ZAPARUCHA A, VERGNE-VAXELAIRE C, PAUL CE. Synthesis of chiral amines via a bi-enzymatic cascade using an ene-reductase and amine dehydrogenase[J]. ChemCatChem, 2022, 14(2): e202101576.
    [13] LIU L, WANG DH, CHEN FF, ZHANG ZJ, CHEN Q, XU JH, WANG ZL, ZHENG GW. Development of an engineered thermostable amine dehydrogenase for the synthesis of structurally diverse chiral amines[J]. Catalysis Science & Technology, 2020, 10(8): 2353-2358.
    [14] MUTTI FG, FUCHS CS, PRESSNITZ D, TURRINI NG, SATTLER JH, LERCHNER A, SKERRA A, KROUTIL W. Amination of ketones by employing two new (S)-selective ω-transaminases and the His-tagged ω-TA from Vibrio fluvialis[J]. European Journal of Organic Chemistry, 2012, 2012(5): 1003-1007.
    [15] PARK E, KIM M, SHIN JS. One-pot conversion of l-threonine into l-homoalanine: biocatalytic production of an unnatural amino acid from a natural one[J]. Advanced Synthesis & Catalysis, 2010, 352(18): 3391-3398.
    [16] MEHTA PK, HALE TI, CHRISTEN P. Aminotransferases: demonstration of homology and division into evolutionary subgroups[J]. European Journal of Biochemistry, 1993, 214(2): 549-561.
    [17] SCHNEIDER G, KÄCK H, LINDQVIST Y. The manifold of vitamin B6 dependent enzymes[J]. Structure, 2000, 8(1): R1-R6.
    [18] STEWART JD. Dehydrogenases and transaminases in asymmetric synthesis[J]. Current Opinion in Chemical Biology, 2001, 5(2): 120-129.
    [19] YUN H, CHO BK, KIM BG. Kinetic resolution of (R,S)-sec-butylamine using ω-transaminase from Vibrio fluvialis JS17 under reduced pressure[J]. Biotechnology Bioengineering, 2004, 87(6): 772-778.
    [20] IWASAKI A, MATSUMOTO K, HASEGAWA J, YASOHARA Y. A novel transaminase, (R)-amine: pyruvate aminotransferase, from Arthrobacter sp. KNK168 (FERM BP-5228): purification, characterization, and gene cloning[J]. Applied Microbiology and Biotechnology, 2012, 93(4): 1563-1573.
    [21] IWASAKI A, YAMADA Y, KIZAKI N, IKENAKA Y, HASEGAWA J. Microbial synthesis of chiral amines by (R)-specific transamination with Arthrobacter sp. KNK168[J]. Applied Microbiology and Biotechnology, 2006, 69(5): 499-505.
    [22] HANSON R, DAVIS B, CHEN YJ, GOLDBERG S, PARKER W, TULLY T, MONTANA M, PATEL R. Preparation of (R)-amines from racemic amines with an (S)-amine transaminase from Bacillus megaterium[J]. Advanced Synthesis & Catalysis, 2008, 350(9): 1367-1375.
    [23] QIU S, CHENG F, JIN LJ, CHEN Y, LI SF, WANG YJ, ZHENG YG. Co-evolution of activity and thermostability of an aldo-keto reductase KmAKR for asymmetric synthesis of statin precursor dichiral diols[J]. Bioorganic Chemistry, 2020, 103: 104228.
    [24] UNSWORTH LD, van der OOST J, KOUTSOPOULOS S. Hyperthermophilic enzymes- stability, activity and implementation strategies for high temperature applications[J]. FEBS Journal, 2007, 274(16): 4044-4056.
    [25] MUTTI FG, FUCHS CS, PRESSNITZ D, SATTLER JH, KROUTIL W. Stereoselectivity of four (R)-selective transaminases for the asymmetric amination of ketones[J]. Advanced Synthesis & Catalysis, 2011, 353(17): 3227-3233.
    [26] GONG XM, QIN Z, LI FL, ZENG BB, ZHENG GW, XU JH. Development of an engineered ketoreductase with simultaneously improved thermostability and activity for making a bulky atorvastatin precursor[J]. ACS Catalysis, 2019, 9(1): 147-153.
    [27] SIDDIQUI KS. Defying the activity-stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability[J]. Critical Reviews in Biotechnology, 2017, 37(3): 309-322.
    [28] MODARRES HP, MOFRAD MR, SANATI-NEZHAD A. Protein thermostability engineering[J]. RSC Advances, 2016, 6(116): 115252-115270.
    [29] FINCH A, KIM J. Thermophilic proteins as versatile scaffolds for protein engineering[J]. Microorganisms, 2018, 6(4): 97.
    [30] MILLER SR. An appraisal of the enzyme stability- activity trade-off[J]. Evolution, 2017, 71(7): 1876-1887.
    [31] BIGMAN LS, LEVY Y. Proteins: molecules defined by their trade-offs[J]. Current Opinion in Structural Biology, 2020, 60: 50-56.
    [32] SHAHID S, AHMAD F, HASSAN MI, ISLAM A. Relationship between protein stability and functional activity in the presence of macromolecular crowding agents alone and in mixture: an insight into stability-activity trade-off[J]. Archives of Biochemistry and Biophysics, 2015, 584: 42-50.
    [33] SHOICHET BK, BAASE WA, KUROKI R, MATTHEWS BW. A relationship between protein stability and protein function[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(2): 452-456.
    [34] CAO XD, HAN RZ, FANG HH, NI Y. Engineering ω-transaminase by random mutagenesis and semi-rational design for the synthesis of (R)-(+)-1-(1-naphthyl)ethylamine[J]. Chinese Journal of Biotechnology, 2020, 36(9): 1828−1837.
    [35] JIA DX, WANG F, ZHAO R, GU BD, PENG C, JIN LQ, LIU ZQ, ZHENG YG. Engineering novel (R)-selective transaminase for efficient symmetric synthesis of d-alanine[J]. Applied and Environmental Microbiology, 2022, 88(9): e0006222.
    [36] SCHÄTZLE S, HÖHNE M, REDESTAD E, ROBINS K, BORNSCHEUER UT. Rapid and sensitive kinetic assay for characterization of ω-transaminases[J]. Analytical Chemistry, 2009, 81(19): 8244-8248.
    [37] NIESEN FH, BERGLUND H, VEDADI M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability[J]. Nature Protocols, 2007, 2(9): 2212-2221.
    [38] PURMONEN M, VALJAKKA J, TAKKINEN K, LAITINEN T, ROUVINEN J. Molecular dynamics studies on the thermostability of family 11 xylanases[J]. Protein Engineering, Design and Selection, 2007, 20(11): 551-559.
    [39] LI SF, XIE JY, QIU S, XU SY, CHENG F, WANG YJ, ZHENG YG. Semirational engineering of an aldo-keto reductase KmAKR for overcoming trade-offs between catalytic activity and thermostability[J]. Biotechnology and Bioengineering, 2021, 118(11): 4441-4452.
    引证文献
引用本文

蔡婷婷,曹佳仁,邱帅,吕常江,樊芳芳,胡升,赵伟睿,梅乐和,黄俊. 半理性设计进化土曲霉来源的ω-转氨酶AtTA热稳定性[J]. 生物工程学报, 2023, 39(6): 2126-2140

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-18
  • 录用日期:2023-01-26
  • 在线发布日期: 2023-06-20
  • 出版日期: 2023-06-25
文章二维码
您是第5991984位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司