多酶级联反应的构建及其在双官能团功能化学品合成中的应用
作者:
基金项目:

国家重点研发计划(2019YFA0905000, 2021YFC2102900)


Construction of multi-enzyme cascade reactions and its application in the synthesis of bifunctional chemicals
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [144]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    利用多酶级联催化反应合成精细化学品是近年来生物催化领域的研究热点。通过构建体外多酶级联体系,可以替代传统的化学合成法,实现多种双官能团功能化学品的绿色合成。本文系统介绍了多酶级联催化反应中不同级联方式的特点及其构建策略,总结了级联反应中元件酶常用的筛选方法、NAD(P)H和ATP等辅酶的再生策略及其在多酶级联反应中的应用,并且阐述了多酶级联催化反应体系在6种双官能团功能化学品,包括ω-氨基脂肪酸、烷基内酰胺、α,ω-二元羧酸、α,ω-二胺、α,ω-二醇、ω-氨基醇合成中的应用。

    Abstract:

    The synthesis of fine chemicals using multi-enzyme cascade reactions is a recent hot research topic in the field of biocatalysis. The traditional chemical synthesis methods were replaced by constructing in vitro multi-enzyme cascades, then the green synthesis of a variety of bifunctional chemicals can be achieved. This article summarizes the construction strategies of different types of multi-enzyme cascade reactions and their characteristics. In addition, the general methods for recruiting enzymes used in cascade reactions, as well as the regeneration of coenzyme such as NAD(P)H or ATP and their application in multi-enzyme cascade reactions are summarized. Finally, we illustrate the application of multi-enzyme cascades in the synthesis of six bifunctional chemicals, including ω-amino fatty acids, alkyl lactams, α,ω-dicarboxylic acids, α,ω-diamines, α,ω-diols, and ω-amino alcohols.

    参考文献
    [1] BARBER DM, ĎURIŠ A, THOMPSON AL, SANGANEE HJ, DIXON DJ. One-pot asymmetric nitro-mannich/hydroamination cascades for the synthesis of pyrrolidine derivatives: combining organocatalysis and gold catalysis[J]. ACS Catalysis, 2014, 4(2): 634-638.
    [2] MUSCHIOL J, PETERS C, OBERLEITNER N, MIHOVILOVIC MD, BORNSCHEUER UT, RUDROFF F. Cascade catalysis-strategies and challenges en route to preparative synthetic biology[J]. Chemical Communications, 2015, 51(27): 5798-5811.
    [3] SCHRITTWIESER JH, VELIKOGNE S, HALL M, KROUTIL W. Artificial biocatalytic linear cascades for preparation of organic molecules[J]. Chemical Reviews, 2018, 118(1): 270-348.
    [4] SPERL JM, SIEBER V. Multienzyme cascade reactions-status and recent advances[J]. ACS Catalysis, 2018, 8(3): 2385-2396.
    [5] SANTACOLOMA PA, SIN G, GERNAEY KV, WOODLEY JM. Multienzyme-catalyzed processes: next-generation biocatalysis[J]. Organic Process Research & Development, 2011, 15(1): 203-212.
    [6] RICCA E, BRUCHER B, SCHRITTWIESER JH. Multi-enzymatic cascade reactions: overview and perspectives[J]. Advanced Synthesis and Catalysis, 2011, 353(13): 2239-2262.
    [7] OROZ-GUINEA I, GARCÍA-JUNCEDA E. Enzyme catalysed tandem reactions[J]. Current Opinion in Chemical Biology, 2013, 17(2): 236-249.
    [8] BENÍTEZ-MATEOS AI, ROURA PADROSA D, PARADISI F. Multistep enzyme cascades as a route towards green and sustainable pharmaceutical syntheses[J]. Nature Chemistry, 2022, 14(5): 489-499.
    [9] LOPEZ-GALLEGO F, SCHMIDT-DANNERT C. Multi-enzymatic synthesis[J]. Current Opinion in Chemical Biology, 2010, 14(2): 174-183.
    [10] FRANCE SP, HEPWORTH LJ, TURNER NJ, FLITSCH SL. Constructing biocatalytic cascades: in vitro and in vivo approaches to de novo multi-enzyme pathways[J]. ACS Catalysis, 2017, 7(1): 710-724.
    [11] SIEDENTOP R, CLAAßEN C, ROTHER D, LÜTZ S, ROSENTHAL K. Getting the most out of enzyme cascades: strategies to optimize in vitro multi- enzymatic reactions[J]. Catalysts, 2021, 11(10): 1183.
    [12] CHEN FF, LIU YY, ZHENG GW, XU JH. Asymmetric amination of secondary alcohols by using a redox-neutral two-enzyme cascade[J]. ChemCatChem, 2015, 7(23): 3838-3841.
    [13] MUTTI FG, KNAUS T, SCRUTTON NS, BREUER M, TURNER NJ. Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades[J]. Science, 2015, 349(6255): 1525-1529.
    [14] SONG W, WANG JH, WU J, LIU J, CHEN XL, LIU LM. Asymmetric assembly of high-value α-functionalized organic acids using a biocatalytic chiral-group- resetting process[J]. Nature Communications, 2018, 9: 3818.
    [15] YU HL, LI T, CHEN FF, LUO XJ, LI AT, YANG C, ZHENG GW, XU JH. Bioamination of alkane with ammonium by an artificially designed multienzyme cascade[J]. Metabolic Engineering, 2018, 47: 184-189.
    [16] WU SK, ZHOU Y, WANG TW, TOO HP, WANG DIC, LI Z. Highly regio- and enantioselective multiple oxy- and amino-functionalizations of alkenes by modular cascade biocatalysis[J]. Nature Communications, 2016, 7: 11917.
    [17] BOTH P, BUSCH H, KELLY PP, MUTTI FG, TURNER NJ, FLITSCH SL. Whole-cell biocatalysts for stereoselective C–H amination reactions[J]. Angewandte Chemie International Edition, 2016, 55(4): 1511-1513.
    [18] LUO zi wei, LEE SY. Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli[J]. Nature Communications, 2017, 8: 15689.
    [19] LIU J, LI Z. Enhancing cofactor recycling in the bioconversion of racemic alcohols to chiral amines with alcohol dehydrogenase and amine dehydrogenase by coupling cells and cell-free system[J]. Biotechnology and Bioengineering, 2019, 116(3): 536-542.
    [20] BRUGGINK A, SCHOEVAART R, KIEBOOM T. Concepts of nature in organic synthesis: cascade catalysis and multistep conversions in concert[J]. Organic Process Research & Development, 2003, 7(5): 622-640.
    [21] RODRIGUEZ C, LAVANDERA I, GOTOR V. Recent advances in cofactor regeneration systems applied to biocatalyzed oxidative processes[J]. Current Organic Chemistry, 2012, 16(21): 2525-2541.
    [22] YOU ZN, ZHOU K, HAN Y, YANG BY, CHEN Q, PAN J, QIAN XL, LI CX, XU JH. Design of a self-sufficient hydride-shuttling cascade for concurrent bioproduction of 7,12-dioxolithocholate and L-tert- leucine[J]. Green Chemistry, 2021, 23(11): 4125-4133.
    [23] KOSZELEWSKI D, LAVANDERA I, CLAY D, ROZZELL D, KROUTIL W. Asymmetric synthesis of optically pure pharmacologically relevant amines employing ω-transaminases[J]. Advanced Synthesis & Catalysis, 2008, 350(17): 2761-2766.
    [24] SCHÄTZLE S, STEFFEN-MUNSBERG F, THONTOWI A, HÖHNE M, ROBINS K, BORNSCHEUER UT. Enzymatic asymmetric synthesis of enantiomerically pure aliphatic, aromatic and arylaliphatic amines with (R)-selective amine transaminases[J]. Advanced Synthesis & Catalysis, 2011, 353(13): 2439-2445.
    [25] TRUPPO MD, TURNER NJ, DAVID ROZZELL J. Efficient kinetic resolution of racemic amines using a transaminase in combination with an amino acid oxidase[J]. Chemical Communications, 2009(16): 2127-2129.
    [26] YOON S, PATIL MD, SARAK S, JEON H, KIM GH, KHOBRAGADE TP, SUNG S, YUN H. Deracemization of racemic amines to enantiopure (R)- and (S)-amines by biocatalytic cascade employing ω-transaminase and amine dehydrogenase[J]. ChemCatChem, 2019, 11(7): 1898-1902.
    [27] KORMAN TP, OPGENORTH PH, BOWIE JU. A synthetic biochemistry platform for cell free production of monoterpenes from glucose[J]. Nature Communications, 2017, 8: 15526.
    [28] FINNIGAN W, HEPWORTH LJ, FLITSCH SL, TURNER NJ. RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades[J]. Nature Catalysis, 2021, 4(2): 98-104.
    [29] DELÉPINE B, DUIGOU T, CARBONELL P, FAULON JL. RetroPath2.0: a retrosynthesis workflow for metabolic engineers[J]. Metabolic Engineering, 2018, 45: 158-170.
    [30] CAI T, SUN HB, QIAO J, ZHU LL, ZHANG F, ZHANG J, TANG ZJ, WEI XL, YANG JG, YUAN QQ, WANG WY, YANG X, CHU HY, WANG Q, YOU C, MA HW, SUN YX, LI Y, LI C, JIANG HF, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527.
    [31] BIRMINGHAM WR, STARBIRD CA, PANOSIAN TD, NANNEMANN DP, IVERSON TM, BACHMANN BO. Bioretrosynthetic construction of a didanosine biosynthetic pathway[J]. Nature Chemical Biology, 2014, 10(5): 392-399.
    [32] HUFFMAN MA, FRYSZKOWSKA A, ALVIZO O, BORRA-GARSKE M, CAMPOS KR, CANADA KA, DEVINE PN, DUAN D, FORSTATER JH, GROSSER ST, HALSEY HM, HUGHES GJ, JO J, JOYCE LA, KOLEV JN, LIANG J, MALONEY KM, MANN BF, MARSHALL NM, MCLAUGHLIN M, et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir[J]. Science, 2019, 366(6470): 1255-1259.
    [33] SHIN JS, KIM BG. Kinetic resolution of α-methylbenzylamine with ω-transaminase screened from soil microorganisms: application of a biphasic system to overcome product inhibition[J]. Biotechnology and Bioengineering, 1997, 55(2): 348-358.
    [34] YEH YF, CHANG SCY, KUO HW, TONG CG, YU SM, DAVID HO TH. A metagenomic approach for the identification and cloning of an endoglucanase from rice straw compost[J]. Gene, 2013, 519(2): 360-366.
    [35] BAYER S, BIRKEMEYER C, BALLSCHMITER M. A nitrilase from a metagenomic library acts regioselectively on aliphatic dinitriles[J]. Applied Microbiology and Biotechnology, 2011, 89(1): 91-98.
    [36] JEFFRIES JWE, DAWSON N, ORENGO C, MOODY TS, QUINN DJ, HAILES HC, WARD JM. Metagenome mining: a sequence directed strategy for the retrieval of enzymes for biocatalysis[J]. ChemistrySelect, 2016, 1(10): 2217-2220.
    [37] MUTTI FG, KROUTIL W. Asymmetric bio-amination of ketones in organic solvents[J]. Advanced Synthesis and Catalysis, 2012, 354(18): 3409-3413.
    [38] SIMON RC, GRISCHEK B, ZEPECK F, STEINREIBER A, BELAJ F, KROUTIL W. Regio- and stereoselective monoamination of diketones without protecting groups[J]. Angewandte Chemie International Edition, 2012, 51(27): 6713-6716.
    [39] PARK E, KIM M, SHIN JS. One-pot conversion of l-threonine into l-homoalanine: biocatalytic production of an unnatural amino acid from a natural one[J]. Advanced Synthesis & Catalysis, 2010, 352(18): 3391-3398.
    [40] HÖHNE M, SCHÄTZLE S, JOCHENS H, ROBINS K, BORNSCHEUER UT. Rational assignment of key motifs for function guides in silico enzyme identification[J]. Nature Chemical Biology, 2010, 6(11): 807-813.
    [41] IGLESIAS C, PANIZZA P, RODRIGUEZ GIORDANO S. Identification, expression and characterization of an (R)-ω-transaminase from Capronia semiimmersa[J]. Applied Microbiology and Biotechnology, 2017, 101(14): 5677-5687.
    [42] JIANG JJ, CHEN X, ZHANG DL, WU QQ, ZHU DM. Characterization of (R)-selective amine transaminases identified by in silico motif sequence blast[J].Applied Microbiology and Biotechnology, 2015, 99(6): 2613-2621.
    [43] SLABU I, GALMAN J, WEISE N, LLOYD R, TURNER N. Putrescine transaminases for the synthesis of saturated nitrogen heterocycles from polyamines[J]. ChemCatChem, 2016, 8(6): 1038-1042.
    [44] QI YK, ZHENG YC, ZHANG ZJ, XU JH. Efficient transformation of linoleic acid into 13(S)-hydroxy- 9,11-(Z,E)-octadecadienoic acid using putative lipoxygenases from Cyanobacteria[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(14): 5558-5565.
    [45] SENIOR AW, EVANS R, JUMPER J, KIRKPATRICK J, SIFRE L, GREEN T, QIN CL, ŽÍDEK A, NELSON AWR, BRIDGLAND A, PENEDONES H, PETERSEN S, SIMONYAN K, CROSSAN S, KOHLI P, JONES DT, SILVER D, KAVUKCUOGLU K, HASSABIS D. Improved protein structure prediction using potentials from deep learning[J]. Nature, 2020, 577(7792): 706-710.
    [46] STEFFEN-MUNSBERG F, VICKERS C, THONTOWI A, SCHÄTZLE S, TUMLIRSCH T, SVEDENDAHL HUMBLE M, LAND H, BERGLUND P, BORNSCHEUER UT, HÖHNE M. Connecting unexplored protein crystal structures to enzymatic function[J]. ChemCatChem, 2013, 5(1): 150-153.
    [47] SUNG S, JEON H, SARAK S, AHSAN MM, PATIL MD, KROUTIL W, KIM BG, YUN H. Parallel anti-sense two-step cascade for alcohol amination leading to ω-amino fatty acids and α,ω-diamines[J]. Green Chemistry, 2018, 20(20): 4591-4595.
    [48] YOO HW, JUNG H, SARAK S, KIM YC, PARK BG, KIM BG, PATIL MD, YUN H. Multi-enzymatic cascade reactions with Escherichia coli-based modules for synthesizing various bioplastic monomers from fatty acid methyl esters[J]. Green Chemistry, 2022, 24(5): 2222-2231.
    [49] CITOLER J, DERRINGTON SR, GALMAN JL, BEVINAKATTI H, TURNER NJ. A biocatalytic cascade for the conversion of fatty acids to fatty amines[J]. Green Chemistry, 2019, 21(18): 4932-4935.
    [50] CHONG GG, DING LY, QIU YY, QIAN XL, DONG YL, LI CX, LI AT, PAN J, XU JH. Building flexible Escherichia coli modules for bifunctionalizing n-octanol: the byproduct of oleic acid biorefinery[J]. Journal of Agricultural and Food Chemistry, 2022, 70(34): 10543-10551.
    [51] CHONG GG, DING LY, QIU YY, QIAN XL, LI CX, PAN J, XU JH. All-carbon-atom refinery of oleic acid into bifunctional chemicals using artificial consortia of Escherichia coli strains[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(39): 13125-13132.
    [52] SARAK S, KHOBRAGADE TP, JEON H, PAGAR AD, GIRI P, LEE S, YUN H. One-pot biocatalytic synthesis of nylon monomers from cyclohexanol using Escherichia coli-based concurrent cascade consortia[J]. Green Chemistry, 2021, 23(23): 9447-9453.
    [53] STEFFEN-MUNSBERG F, MATZEL P, SOWA MA, BERGLUND P, BORNSCHEUER UT, HÖHNE M. Bacillus anthracis ω-amino acid: pyruvate transaminase employs a different mechanism for dual substrate recognition than other amine transaminases[J]. Applied Microbiology and Biotechnology, 2016, 100(10): 4511-4521.
    [54] STEPANKOVA V, BIDMANOVA S, KOUDELAKOVA T, PROKOP Z, CHALOUPKOVA R, DAMBORSKY J. Strategies for stabilization of enzymes in organic solvents[J]. ACS Catalysis, 2013, 3(12): 2823-2836.
    [55] WANG Y, SUBRIZI F, CARTER EM, SHEPPARD TD, WARD JM, HAILES HC. Enzymatic synthesis of benzylisoquinoline alkaloids using a parallel cascade strategy and tyrosinase variants[J]. Nature Communications, 2022, 13(1): 5436.
    [56] GAO DK, SONG W, WU J, GUO L, GAO C, LIU J, CHEN XL, LIU LM. Efficient production of L-homophenylalanine by enzymatic-chemical cascade catalysis[J]. Angewandte Chemie International Edition, 2022, 61(36): e202207077.
    [57] LIU Q, XIE XY, TANG MC, TAO WT, SHI T, ZHANG YZ, HUANG TT, ZHAO YL, DENG ZX, LIN SJ. One-pot asymmetric synthesis of an aminodiol intermediate of florfenicol using engineered transketolase and transaminase[J]. ACS Catalysis, 2021, 11(12): 7477-7488.
    [58] WANG ZL, LI XR, LI Z. Engineering of cascade reactions and alditol oxidase for high-yielding synthesis of (R)-phenylethanolamine from styrene, l-phenylalanine, glycerol or glucose[J]. ChemCatChem, 2022, 14(17): e202200418.
    [59] GMELCH TJ, SPERL JM, SIEBER V. Optimization of a reduced enzymatic reaction cascade for the production of l-alanine[J]. Scientific Reports, 2019, 9(1): 11754.
    [60] BECKER M, NIKEL P, ANDEXER JN, LÜTZ S, ROSENTHAL K. A multi-enzyme cascade reaction for the production of 2',3'-cGAMP[J]. Biomolecules, 2021, 11(4): 590.
    [61] JAKOBLINNERT A, ROTHER D. A two-step biocatalytic cascade in micro-aqueous medium: using whole cells to obtain high concentrations of a vicinal diol[J]. Green Chemistry, 2014, 16(7): 3472-3482.
    [62] van SCHIE MMCH, SPÖRING JD, BOCOLA M, DOMÍNGUEZ de MARÍA P, ROTHER D. Applied biocatalysis beyond just buffers-from aqueous to unconventional media. Options and guidelines[J]. Green Chemistry, 2021, 23(9): 3191-3206.
    [63] YUN H, KIM J, KINNERA K, KIM BG. Synthesis of enantiomerically puretrans-(1R,2R)-andcis-(1S,2R)-1- amino-2-indanol by lipase and ω-transaminase[J]. Biotechnology and Bioengineering, 2006, 93(2): 391-395.
    [64] KIM TH, KANG SH, HAN JE, SEO EJ, JEON EY, CHOI GE, PARK JB, OH DK. Multilayer engineering of enzyme cascade catalysis for one-pot preparation of nylon monomers from renewable fatty acids[J]. ACS Catalysis, 2020, 10(9): 4871-4878.
    [65] LI JJ, YU SS, WANG YG, YAO PY, WU QQ, ZHU DM. Simultaneous preparation of (S)-2-aminobutane and d-alanine or d-homoalanine via biocatalytic transamination at high substrate concentration[J]. Organic Process Research & Development, 2022, 26(7): 2013-2020.
    [66] FAN CW, XU GC, MA BD, BAI YP, ZHANG J, XU JH. A novel d-mandelate dehydrogenase used in three-enzyme cascade reaction for highly efficient synthesis of non-natural chiral amino acids[J]. Journal of Biotechnology, 2015, 195: 67-71.
    [67] SAVILE CK, JANEY JM, MUNDORFF EC, MOORE JC, TAM S, JARVIS WR, COLBECK JC, KREBBER A, FLEITZ FJ, BRANDS J, DEVINE PN, HUISMAN GW, HUGHES GJ. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture[J]. Science, 2010, 329(5989): 305-309.
    [68] WANG H, ZHENG YC, CHEN FF, XU JH, YU HL. Enantioselective bioamination of aromatic alkanes using ammonia: a multienzymatic cascade approach[J]. ChemCatChem, 2020, 12(7): 2077-2082.
    [69] AHSAN MM, JEON H, NADARAJAN SP, CHUNG T, YOO HW, KIM BG, PATIL MD, YUN H. Biosynthesis of the nylon 12 monomer, ω-aminododecanoic acid with novel CYP153A, AlkJ, and ω-TA enzymes[J]. Biotechnology Journal, 2018, 13(4): e1700562.
    [70] ZHU YL, YUAN JF. A four-step enzymatic cascade for efficient production of l-phenylglycine from biobased l-phenylalanine[J]. ChemBioChem, 2022, 23(8): e202100661.
    [71] LUO W, HU JG, LU JP, ZHANG HL, WANG XP, LIU YT, DONG LQ, YU XB. One pot cascade synthesis of l-2-aminobutyric acid employing ω-transaminase from Paracoccus pantotrophus[J]. Molecular Catalysis, 2021, 515: 111890.
    [72] BURNS M, BI WY, KIM H, LALL MS, LI C, O’NEILL BT. Ketoreductase/transaminase, one-pot, multikilogram biocatalytic cascade reaction[J]. Organic Process Research & Development, 2021, 25(4): 941-946.
    [73] LITTLECHILD JA. Enzymes from extreme environments and their industrial applications[J]. Frontiers in Bioengineering and Biotechnology, 2015, 3: 161.
    [74] ABU R, WOODLEY JM. Application of enzyme coupling reactions to shift thermodynamically limited biocatalytic reactions[J]. ChemCatChem, 2015, 7(19): 3094-3105.
    [75] DAWOODAWH, WEIß MS, SCHULZ C, PAVLIDIS IV, IDING H, DEISOUZA ROMA, BORNSCHEUER UT. Isopropylamine as amine donor in transaminase- catalyzed reactions: better acceptance through reaction and enzyme engineering[J]. ChemCatChem, 2018, 10(18): 3943-3949.
    [76] SUN ZB, ZHANG ZJ, LI FL, NIE Y, YU HL, XU JH. One pot asymmetric synthesis of (R)-phenylglycinol from racemic styrene oxide via cascade biocatalysis[J]. ChemCatChem, 2019, 11(16): 3802-3807.
    [77] TELZEROW A, HOBISCH M, MÜLLER M, SCHÜRMANN M, SCHWAB H, STEINER K. A co-expression system to shift the equilibrium of transamination reactions toward the synthesis of enantiomerically pure amines[J]. Molecular Catalysis, 2019, 471: 38-43.
    [78] SHIN JS, KIM BG. Asymmetric synthesis of chiral amines with ω‐transaminase[J]. Biotechnology and Bioengineering, 1999, 65(2): 206-211.
    [79] KOSZELEWSKI D, LAVANDERA I, CLAY D, GUEBITZ G, ROZZELL D, KROUTIL W. Formal asymmetric biocatalytic reductive amination[J]. Angewandte Chemie International Edition, 2008, 47(48): 9337-9340.
    [80] MUTTI FG, FUCHS CS, PRESSNITZ D, SATTLER JH, KROUTIL W. Stereoselectivity of four (R)-selective transaminases for the asymmetric amination of ketones[J]. Advanced Synthesis & Catalysis, 2011, 353(17): 3227-3233.
    [81] SCHREWE M, LADKAU N, BÜHLER B, SCHMID A. Direct terminal alkylamino-functionalization via multistep biocatalysis in one recombinant whole-cell catalyst[J]. Advanced Synthesis & Catalysis, 2013, 355(9): 1693-1697.
    [82] WACHTMEISTER J, ROTHER D. Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale[J]. Current Opinion in Biotechnology, 2016, 42: 169-177.
    [83] FRANCE SP, HUSSAIN S, HILL AM, HEPWORTH LJ, HOWARD RM, MULHOLLAND KR, FLITSCH SL, TURNER NJ. One-pot cascade synthesis of mono- and disubstituted piperidines and pyrrolidines using carboxylic acid reductase (CAR), ω-transaminase (ω-TA), and imine reductase (IRED) biocatalysts[J]. ACS Catalysis, 2016, 6(6): 3753-3759.
    [84] HEPWORTH LJ, HUSSAIN S, BOTH P, TURNER N, FLITSCH S. Enzyme cascades in whole cells for the synthesis of chiral cyclic amines[J]. ACS Catalysis, 2017, 7(4): 2920-2925.
    [85] SONG H, DING MZ, JIA XQ, MA Q, YUAN YJ. Synthetic microbial consortia: from systematic analysis to construction and applications[J]. Chemical Society Reviews, 2014, 43(20): 6954-6981.
    [86] JIA Q, ZHENG YC, LI HP, QIAN XL, ZHANG ZJ, XU JH. Engineering isopropanol dehydrogenase for efficient regeneration of nicotinamide cofactors[J]. Applied and Environmental Microbiology, 2022, 88(9): e0034122.
    [87] CHENG F, ZHOU SY, CHEN LX, ZHANG W, LI SF, WENG CY, WANG YJ, ZHENG YG. Reaction-kinetic model-guided biocatalyst engineering for dual-enzyme catalyzed bioreaction system[J]. Chemical Engineering Journal, 2023, 452: 138997.
    [88] KATAOKA M, ROHANI LPS, WADA M, KITA K, YANASE H, URABE I, SHIMIZU S. Escherichia coli transformant expressing the glucose dehydrogenase gene from Bacillus megaterium as a cofactor regenerator in a chiral alcohol production system[J]. Bioscience, Biotechnology, and Biochemistry, 1998, 62(1): 167-169.
    [89] CHENG F, LI QH, ZHANG HY, WEI L, ZHANG JM, LI JM, XUE YP, ZHENG YG. Simultaneous directed evolution of coupled enzymes for efficient asymmetric synthesis of l-phosphinothricin[J]. Applied and Environmental Microbiology, 2021, 87(5): e0256320.
    [90] JIANG HW, CHEN Q, PAN J, ZHENG GW, XU JH. Rational engineering of formate dehydrogenase substrate/cofactor affinity for better performance in NADPH regeneration[J]. Applied Biochemistry and Biotechnology, 2020, 192(2): 530-543.
    [91] HATRONGJIT R, PACKDIBAMRUNG K. A novel NADP+-dependent formate dehydrogenase from Burkholderia stabilis 15516: screening, purification and characterization[J]. Enzyme and Microbial Technology, 2010, 46(7): 557-561.
    [92] SHOU C, ZHENG YC, ZHAN JR, LI CX, XU JH. Removing the obstacle to (–)-menthol biosynthesis by building a microbial cell factory of (+)- cis-isopulegone from (–)-limonene[J]. ChemSusChem, 2022, 15(9): e202101741.
    [93] JOHANNES TW, WOODYER RD, ZHAO HM. Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration[J]. Applied and Environmental Microbiology, 2005, 71(10): 5728-5734.
    [94] ZHANG LY, KING E, BLACK WB, HECKMANN CM, WOLDER A, CUI YT, NICKLEN F, SIEGEL JB, LUO R, PAUL CE, LI H. Directed evolution of phosphite dehydrogenase to cycle noncanonical redox cofactors via universal growth selection platform[J]. Nature Communications, 2022, 13(1): 5021.
    [95] VRTIS JM, WHITE AK, METCALF WW, van der DONK WA. Phosphite dehydrogenase: a versatile cofactor-regeneration enzyme[J]. Angewandte Chemie International Edition, 2002, 114(17): 3391-3393.
    [96] ZHENG MM, WANG RF, LI CX, XU JH. Two-step enzymatic synthesis of ursodeoxycholic acid with a new 7β-hydroxysteroid dehydrogenase from Ruminococcus torques[J]. Process Biochemistry, 2015, 50(4): 598-604.
    [97] LI HP, YOU ZN, LIU YY, ZHENG GW, GONG H, MO YM, ZHU N, BAI YP, XU JH. Continuous-flow microreactor-enhanced clean NAD+ regeneration for biosynthesis of 7-oxo-lithocholic acid[J]. ACS Sustainable Chemistry & Engineering, 2021, 10(1): 456-463.
    [98] GEUEKE B, RIEBEL B, HUMMEL W. NADH oxidase from Lactobacillus brevis: a new catalyst for the regeneration of NAD[J]. Enzyme and Microbial Technology, 2003, 32(2): 205-211.
    [99] LEE LG, WHITESIDES GM. Enzyme-catalyzed organic synthesis: a comparison of strategies for in situ regeneration of NAD from NADH[J]. Journal of the American Chemical Society, 1985, 107(24): 6999-7008.
    [100] MICHAEL B, HANNES L, LUO L, SCHMID ROLF D, DIRK WB. Biocatalytic process optimization based on mechanistic modeling of cholic acid oxidation with cofactor regeneration[J]. Biotechnology and Bioengineering, 2011, 108(6): 1307-1317.
    [101] SATTLER JH, FUCHS M, MUTTI FG, GRISCHEK B, ENGEL P, PFEFFER J, WOODLEY J, KROUTIL W. Introducing an in situ capping strategy in systems biocatalysis to access 6-aminohexanoic acid[J]. Angewandte Chemie International Edition, 2014, 53(51): 14153-14157.
    [102] SHIMANE M, SUGAI Y, KAINUMA R, NATSUME M, KAWAIDE H. Mevalonate-dependent enzymatic synthesis of amorphadiene driven by an ATP- regeneration system using polyphosphate kinase[J]. Bioscience, Biotechnology, and Biochemistry, 2012, 76(8): 1558-1560.
    [103] MENG QL, ZHANG YF, JU XZ, MA CL, MA HW, CHEN JZ, ZHENG P, SUN JB, ZHU J, MA YH, ZHAO XM, CHEN T. Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis[J]. Journal of Biotechnology, 2016, 226: 8-13.
    [104] SATO M, MASUDA Y, KIRIMURA K, KINO K. Thermostable ATP regeneration system using polyphosphate kinase from Thermosynechococcus elongatus BP-1 for D-amino acid dipeptide synthesis[J]. Journal of Bioscience and Bioengineering, 2007, 103(2): 179-184.
    [105] ZHANG X, WU H, HUANG B, LI ZM, YE Q. One-pot synthesis of glutathione by a two-enzyme cascade using a thermophilic ATP regeneration system[J]. Journal of Biotechnology, 2017, 241: 163-169.
    [106] LIU S, LI Y, ZHU J. Enzymatic production of l-theanine by γ-glutamylmethylamide synthetase coupling with an ATP regeneration system based on polyphosphate kinase[J]. Process Biochemistry, 2016, 51(10): 1458-1463.
    [107] RESNICK SM, ZEHNDER AJB. In vitro ATP regeneration from polyphosphate and AMP by polyphosphate: AMP phosphotransferase and adenylate kinase from Acinetobacter johnsonii 210A[J]. Applied and Environmental Microbiology, 2000, 66(5): 2045-2051.
    [108] STROHMEIER GA, EITELJÖRG IC, SCHWARZ A, WINKLER M. Enzymatic one-step reduction of carboxylates to aldehydes with cell-free regeneration of ATP and NADPH[J]. Chemistry-A European Journal, 2019, 25(24): 6119-6123.
    [109] MORDHORST S, MAURER A, POPADIĆ D, BRECH J, ANDEXER JN. A flexible polyphosphate-driven regeneration system for coenzyme A dependent catalysis[J]. ChemCatChem, 2017, 9(22): 4164-4168.
    [110] SUZUKI S, HARA R, KINO K. Production of aminoacyl prolines using the adenylation domain of nonribosomal peptide synthetase with class Ⅲ polyphosphate kinase 2-mediated ATP regeneration[J]. Journal of Bioscience and Bioengineering, 2018, 125(6): 644-648.
    [111] NOGUCHI T, SHIBA T. Use of Escherichia coli polyphosphate kinase for oligosaccharide synthesis[J]. Bioscience, Biotechnology, and Biochemistry, 1998, 62(8):1594-1596.
    [112] MORDHORST S, SIEGRIST J, MÜLLER M, RICHTER M, ANDEXER JN. Catalytic alkylation using a cyclic S-adenosylmethionine regeneration system[J]. Angewandte Chemie International Edition, 2017, 56(14):4037-4041.
    [113] 李元, 刘珊, 祝俊. PPK和GMAS共表达重组菌株的构建及其在l-茶氨酸合成中的应用[J]. 生物工程学报, 2016, 32(12):1745-1749. LI Y, LIU S, ZHU J. Construction of recombinant strains co-expressing PPK and GMAS for the synthesis of l-theanine[J]. Chinese Journal of Biotechnology, 2016, 32(12):1745-1749 (in Chinese).
    [114] KULMER ST, GUTMANN A, LEMMERER M, NIDETZKY B. Biocatalytic cascade of polyphosphate kinase and sucrose synthase for synthesis of nucleotide- activated derivatives of glucose[J]. Advanced Synthesis & Catalysis, 2017, 359(2):292-301.
    [115] TAVANTI M, HOSFORD J, LLOYD RC, BROWN MJB. ATP regeneration by a single polyphosphate kinase powers multigram-scale aldehyde synthesis in vitro[J]. Green Chemistry, 2021, 23(2):828-837.
    [116] LEE H, SUGIHARTO YEC, LEE H, JEON W, AHN J, LEE H. Biotransformation of dicarboxylic acids from vegetable oil-derived sources:current methods and suggestions for improvement[J]. Applied Microbiology and Biotechnology, 2019, 103(4):1545-1555.
    [117] DASGUPTA S, HAMMOND WB, GODDARD WA. Crystal structures and properties of nylon polymers from theory[J]. Journal of the American Chemical Society, 1996, 118(49):12291-12301.
    [118] NOACK H, GEORGIEV V, BLOMBERG MRA, SIEGBAHN PE, JOHANSSON AJ. Theoretical insights into heme-catalyzed oxidation of cyclohexane to adipic acid[J]. Inorganic Chemistry, 2011, 50(4):1194-1202.
    [119] RAJ K, PARTOW S, CORREIA K, KHUSNUTDINOVA A, YAKUNIN A, MAHADEVAN R. Biocatalytic production of adipic acid from glucose using engineered Saccharomyces cerevisiae[J]. Metabolic Engineering Communications, 2018, 6:28-32.
    [120] BOWEN CH, BONIN J, KOGLER A, BARBA- OSTRIA C, ZHANG FZ. Engineering Escherichia coli for conversion of glucose to medium-chain ω-hydroxy fatty acids and α,ω-dicarboxylic acids[J]. ACS Synthetic Biology, 2016, 5(3):200-206.
    [121] ZHAO M, HUANG DX, ZHANG XJ, KOFFAS MAG, ZHOU JW, DENG Y. Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway[J]. Metabolic Engineering, 2018, 47:254-262.
    [122] YU JL, XIA XX, ZHONG JJ, QIAN ZG. Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli[J]. Biotechnology and Bioengineering, 2014, 111(12):2580-2586.
    [123] CHAE TU, AHN JH, KO YS, KIM JW, LEE JA, LEE EH, LEE SY. Metabolic engineering for the production of dicarboxylic acids and diamines[J]. Metabolic Engineering, 2020, 58:2-16.
    [124] DENG Y, MAO Y. Production of adipic acid by the native-occurring pathway in Thermobifida fusca B6[J]. Journal of Applied Microbiology, 2015, 119(4):1057-1063.
    [125] SUN J, RAZA M, SUN XX, YUAN QP. Biosynthesis of adipic acid via microaerobic hydrogenation of cis, cis-muconic acid by oxygen-sensitive enoate reductase[J]. Journal of Biotechnology, 2018, 280:49-54.
    [126] WANG F, ZHAO J, LI Q, YANG J, LI RJ, MIN J, YU XJ, ZHENG GW, YU HL, ZHAI C, ACEVEDO- ROCHA CG, MA LX, LI AT. One-pot biocatalytic route from cycloalkanes to α,ω-dicarboxylic acids by designed Escherichia coli consortia[J]. Nature Communications, 2020, 11(1):5035.
    [127] ADKINS J, JORDAN J, NIELSEN DR. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate[J]. Biotechnology and Bioengineering, 2013, 110(6):1726-1734.
    [128] CLOMBURG JM, BLANKSCHIEN MD, VICK JE, CHOU A, KIM S, GONZALEZ R. Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids[J]. Metabolic Engineering, 2015, 28:202-212.
    [129] SONG JW, LEE JH, BORNSCHEUER UT, PARK JB. Microbial synthesis of medium-chain α,ω-dicarboxylic acids and ω-aminocarboxylic acids from renewable long-chain fatty acids[J]. Advanced Synthesis & Catalysis, 2014, 356(8):1782-1788.
    [130] LADKAU N, ASSMANN M, SCHREWE M, JULSING MK, SCHMID A, BÜHLER B. Efficient production of the nylon 12 monomer ω-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli[J]. Metabolic Engineering, 2016, 36:1-9.
    [131] AHSAN M, PATIL M, JEON H, SUNG S, CHUNG T, YUN H. Biosynthesis of nylon 12 monomer, ω-aminododecanoic acid using artificial self-sufficient P450, AlkJ and ω-TA[J]. Catalysts, 2018, 8(9):400.
    [132] GE JW, YANG XH, YU HW, YE LD. High-yield whole cell biosynthesis of nylon 12 monomer with self-sufficient supply of multiple cofactors[J]. Metabolic Engineering, 2020, 62:172-185.
    [133] MARIA R, HECKMANN CHRISTIAN M, FRANCESCA P. Biocatalytic production of a nylon 6 precursor from caprolactone in continuous flow[J]. ChemSusChem, 2022, 15(16):e202200811.
    [134] SARAK S, SUNG S, JEON H, PATIL MD, KHOBRAGADE TP, PAGAR AD, DAWSON PE, YUN H. An integrated cofactor/co-product recycling cascade for the biosynthesis of nylon monomers from cycloalkylamines[J]. Angewandte Chemie International Edition, 2021, 60(7):3481-3486.
    [135] FEDORCHUK TP, KHUSNUTDINOVA AN, EVDOKIMOVA E, FLICK R, Di LEO R, STOGIOS P, SAVCHENKO A, YAKUNIN AF. One-pot biocatalytic transformation of adipic acid to 6-aminocaproic acid and 1,6-hexamethylenediamine using carboxylic acid reductases and transaminases[J]. Journal of the American Chemical Society, 2020, 142(2):1038-1048.
    [136] BELLUSSI G, PEREGO C. Industrial catalytic aspects of the synthesis of monomers for nylon production[J]. Cattech, 2000, 4(1):4-16.
    [137] ZHANG ZW, LI Q, WANG F, LI RJ, YU XJ, KANG LX, ZHAO J, LI AT. One-pot biosynthesis of 1,6-hexanediol from cyclohexane by de novo designed cascade biocatalysis[J]. Green Chemistry, 2020, 22(21):7476-7483.
    [138] LIU YF, WANG W, ZENG AP. Biosynthesizing structurally diverse diols via a general route combining oxidative and reductive formations of OH-groups[J]. Nature Communications, 2022, 13(1):1595.
    [139] AHSAN MM, SUNG S, JEON H, PATIL MD, CHUNG T, YUN H. Biosynthesis of medium- to long-chain α,ω-diols from free fatty acids using CYP153A monooxygenase, carboxylic acid reductase, and E. coli endogenous aldehyde reductases[J]. Catalysts, 2017, 8(1):4.
    [140] McDONALD AD, BRUFFY SK, KASAT AT, BULLER AR. Engineering enzyme substrate scope complementarity for promiscuous cascade synthesis of 1,2-amino alcohols[J]. Angewandte Chemie International Edition, 2022, 61(46):e202212637.
    [141] LIU S, ZHANG X, LIU F, XU MJ, YANG TW, LONG MF, ZHOU JP, OSIRE T, YANG ST, RAO ZM. Designing of a cofactor self-sufficient whole-cell biocatalyst system for production of 1,2-amino alcohols from epoxides[J]. ACS Synthetic Biology, 2019, 8(4):734-743.
    [142] CORRADO MARIA L, TANJA K, ULRICH S, MUTTI FRANCESCO G. High-yield synthesis of enantiopure 1,2-amino alcohols from l-phenylalanine via linear and divergent enzymatic cascades[J]. Organic Process Research & Development, 2022, 26(7):2085-2095.
    [143] AHARONI SM. N-nylons:Their Synthesis, Structure, and Properties[M]. John Wiley & Sons Incorporated, 1997.
    [144] SATTLER JH, FUCHS M, TAUBER K, MUTTI FG, FABER K, PFEFFER J, HAAS T, KROUTIL W. Redox self-sufficient biocatalyst network for the amination of primary alcohols[J]. Angewandte Chemie International Edition, 2012, 124(36):9290-9293.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李举谋,石焜,张志钧,许建和,郁惠蕾. 多酶级联反应的构建及其在双官能团功能化学品合成中的应用[J]. 生物工程学报, 2023, 39(6): 2158-2189

复制
分享
文章指标
  • 点击次数:500
  • 下载次数: 1437
  • HTML阅读次数: 1436
  • 引用次数: 0
历史
  • 收稿日期:2022-12-14
  • 录用日期:2023-02-06
  • 在线发布日期: 2023-06-20
  • 出版日期: 2023-06-25
文章二维码
您是第5984973位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司