酿酒酵母细胞器区室化合成化学品的研究进展
作者:
基金项目:

国家重点研发计划(2018YFB1501401);山东省自然科学基金(ZR2020MC016);齐鲁工业大学(山东省科学院)科教产重大创新专项(2022JBZ01-06);中国博士后科学基金(2019M652374);齐鲁工业大学(山东省科学院)生物及生物化学 ESI 学科开放课题(202020);山东省技术创新引导计划项目(02055183);齐鲁工业大学(山东省科学院)生物基材料与绿色造纸国家重点实验室自主研究课题(ZZ20190313)


Advances in the production of chemicals by organelle compartmentalization in Saccharomyces cerevisiae
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [128]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    公认食品安全的酿酒酵母(Saccharomyces cerevisiae)是合成生物学中被广泛研究的底盘细胞,常作为生产高值或大宗化学品的微生物细胞工厂。近年来,通过各种代谢工程改造策略,已有大量化学品的合成途径在酿酒酵母中建立并优化,且部分化学品具备了产业化价值。作为真核生物,酿酒酵母具有完整的细胞内膜系统及其组成的复杂细胞器区室,而这些细胞器区室往往含有某些化学品合成所必需的较高浓度前体底物(如线粒体中的乙酰辅酶A),或更加充足的酶、辅因子、能量等,可为目标产物的生物合成提供更适宜的物理、化学环境,但同时不同细胞器的结构特点有时也成为特定化合物合成的障碍。为此,研究人员在深入分析不同细胞器自身特点的基础上,结合目标化学品合成途径与细胞器之间的适配度,对细胞器开展了大量针对性改造工作以提高产物合成效率。本文详细综述了酿酒酵母中线粒体、过氧化物酶体、高尔基体、内质网、脂滴和液泡等细胞器的途径改造及优化策略,以及利用细胞器区室化合成化学品的研究进展,并对目前存在的困难和挑战以及未来研究方向进行了总结与展望。

    Abstract:

    As a generally-recognized-as-safe microorganism, Saccharomyces cerevisiae is a widely studied chassis cell for the production of high-value or bulk chemicals in the field of synthetic biology. In recent years, a large number of synthesis pathways of chemicals have been established and optimized in S. cerevisiae by various metabolic engineering strategies, and the production of some chemicals have shown the potential of commercialization. As a eukaryote, S. cerevisiae has a complete inner membrane system and complex organelle compartments, and these compartments generally have higher concentrations of the precursor substrates (such as acetyl-CoA in mitochondria), or have sufficient enzymes, cofactors and energy which are required for the synthesis of some chemicals. These features may provide a more suitable physical and chemical environment for the biosynthesis of the targeted chemicals. However, the structural features of different organelles hinder the synthesis of specific chemicals. In order to ameliorate the efficiency of product biosynthesis, researchers have carried out a number of targeted modifications to the organelles grounded on an in-depth analysis of the characteristics of different organelles and the suitability of the production of target chemicals biosynthesis pathway to the organelles. In this review, the reconstruction and optimization of the biosynthesis pathways for production of chemicals by organelle mitochondria, peroxisome, golgi apparatus, endoplasmic reticulum, lipid droplets and vacuole compartmentalization in S. cerevisiae are reviewed in-depth. Current difficulties, challenges and future perspectives are highlighted.

    参考文献
    [1] DUSSÉAUX S, WAJN WT, LIU YX, IGNEA C, KAMPRANIS SC. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(50): 31789-31799.
    [2] JUNG SW, YEOM J, PARK JS, YOO SM. Recent advances in tuning the expression and regulation of genes for constructing microbial cell factories[J]. Biotechnology Advances, 2021, 50: 107767.
    [3] 张晓龙, 王晨芸, 刘延峰, 李江华, 刘龙, 堵国成. 基于合成生物技术构建高效生物制造系统的研究进展[J]. 合成生物学, 2021, 2(6): 863-875. ZHANG XL, WANG CY, LIU YF, LI JH, LIU L, DU GC. Research progress of constructing efficient biomanufacturing system based on synthetic biotechnology[J]. Synthetic Biology Journal, 2021, 2(6): 863-875 (in Chinese).
    [4] 王明, 栾韬, 赵建志, 李洪兴, 鲍晓明. 酿酒酵母转化木糖生产化学品的研究进展[J]. 生物工程学报, 2021, 37(3): 1042-1057. WANG M, LUAN T, ZHAO JZ, LI HX, BAO XM. Progress in studies on production of chemicals from xylose by Saccharomyces cerevisiae[J]. Chinese Journal of Biotechnology, 2021, 37(3): 1042-1057 (in Chinese).
    [5] DAVID HAWKINS R, HON GC, REN B. Next-generation genomics: an integrative approach[J]. Nature Reviews Genetics, 2010, 11(7): 476-486.
    [6] REAVES ML, RABINOWITZ JD. Metabolomics in systems microbiology[J]. Current Opinion in Biotechnology, 2011, 22(1): 17-25.
    [7] SNYDER M, GALLAGHER JEG. Systems biology from a yeast omics perspective[J]. FEBS Letters, 2009, 583(24): 3895-3899.
    [8] DURAN L, LÓPEZ JM, AVALOS JL. ¡Viva la mitochondria!: harnessing yeast mitochondria for chemical production[J]. FEMS Yeast Research, 2020, 20(6): foaa037.
    [9] HU YT, ZHU ZW, NIELSEN J, SIEWERS V. Engineering Saccharomyces cerevisiae cells for production of fatty acid-derived biofuels and chemicals[J]. Open Biology, 2019, 9(5): 190049.
    [10] RO DK, PARADISE EM, OUELLET M, FISHER KJ, NEWMAN KL, NDUNGU JM, HO KA, EACHUS RA, HAM TS, KIRBY J, CHANG MCY, WITHERS ST, SHIBA Y, SARPONG R, KEASLING JD. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086): 940-943.
    [11] WESTFALL PJ, PITERA DJ, LENIHAN JR, ENG DIANA, WOOLARD FX, REGENTIN R, HORNING T, TSURUTA H, MELIS DJ, OWENS A, FICKES S, DIOLA D, BENJAMIN KR, KEASLING JD, LEAVELL MD, McPHEE DJ, RENNINGER NS, NEWMAN JD, PADDON CJ. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3): E111-E118.
    [12] PADDON CJ, WESTFALL PJ, PITERA DJ, BENJAMIN K, FISHER K, MCPHEE D, LEAVELL MD, TAI A, MAIN A, ENG D, POLICHUK DR, TEOH KH, REED DW, TREYNOR T, LENIHAN J, FLECK M, BAJAD S, DANG G, DENGROVE D, DIOLA D, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496(7446): 528-532.
    [13] HOU J, TYO K, LIU ZH, PETRANOVIC D, NIELSEN J. Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2012, 14(2): 120-127.
    [14] NIELSEN J. Production of biopharmaceutical proteins by yeast: advances through metabolic engineering[J]. Bioengineered, 2013, 4(4): 207-211.
    [15] MEADOWS AL, HAWKINS KM, TSEGAYE Y, ANTIPOV E, KIM Y, RAETZ L, DAHL RH, TAI AN, MAHATDEJKUL-MEADOWS T, XU L, ZHAO LS, DASIKA MS, MURARKA A, LENIHAN J, ENG DIANA, LENG JS, LIU CL, WENGER JW, JIANG HX, CHAO L, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production[J]. Nature, 2016, 537(7622): 694-697.
    [16] ZHANG W, SHAO W, ZHANG A. Isobutanol tolerance and production of Saccharomyces cerevisiae can be improved by engineering its TATA-binding protein Spt15[J]. Letters in Applied Microbiology, 2021, 73(6): 694-707.
    [17] PURDUE PE, LAZAROW PB. Peroxisome biogenesis[J]. Annual Review of Cell and Developmental Biology, 2001, 17: 701-752.
    [18] GUIRIMAND G, KULAGINA N, PAPON N, HASUNUMA T, COURDAVAULT V. Innovative tools and strategies for optimizing yeast cell factories[J]. Trends in Biotechnology, 2021, 39(5): 488-504.
    [19] DELOACHE WC, RUSS ZN, DUEBER JE. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways[J]. Nature Communications, 2016, 7: 11152.
    [20] KANG W, MA T, LIU M, QU JL, LIU ZJ, ZHANG HW, SHI B, FU S, MA JC, LAI LTF, HE SC, QU JN, WING-NGOR AU S, HO KANG B, YU LAU WC, DENG ZX, XIA J, LIU TG. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux[J]. Nature Communications, 2019, 10: 4248.
    [21] DU L, LI SY. Compartmentalized biosynthesis of fungal natural products[J]. Current Opinion in Biotechnology, 2021, 69: 128-135.
    [22] MA YS, LI JB, HUANG SW. Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica[J]. Metabolic Engineering, 2021, 68: 152-161.
    [23] HAMMER SK, AVALOS JL. Harnessing yeast organelles for metabolic engineering[J]. Nature Chemical Biology, 2017, 13(8): 823-832.
    [24] LV XM, WANG F, ZHOU PP, YE LD, XIE WP, XU HM, YU HW. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae[J]. Nature Communications, 2016, 7: 12851.
    [25] THOMIK T, WITTIG I, CHOE JY, BOLES E, OREB M. An artificial transport metabolon facilitates improved substrate utilization in yeast[J]. Nature Chemical Biology, 2017, 13(11): 1158-1163.
    [26] CAO X, YANG S, CAO CY, ZHOU YJ. Harnessing sub-organelle metabolism for biosynthesis of isoprenoids in yeast[J]. Synthetic and Systems Biotechnology, 2020, 5(3): 179-186.
    [27] ZHU ZT, DU MM, GAO B, TAO XY, ZHAO M, REN YH, WANG FQ, WEI DZ. Metabolic compartmentalization in yeast mitochondria: burden and solution for squalene overproduction[J]. Metabolic Engineering, 2021, 68: 232-245.
    [28] JIA HJ, CHEN TH, QU JZ, YAO MD, XIAO WH, WANG Y, LI C, YUAN YJ. Collaborative subcellular compartmentalization to improve GPP utilization and boost sabinene accumulation in Saccharomyces cerevisiae[J]. Biochemical Engineering Journal, 2020, 164: 107768.
    [29] SHI YS, WANG D, LI RS, HUANG LQ, DAI ZB, ZHANG XL. Engineering yeast subcellular compartments for increased production of the lipophilic natural products ginsenosides[J]. Metabolic Engineering, 2021, 67: 104-111.
    [30] MALINA C, LARSSON C, NIELSEN J. Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology[J]. FEMS Yeast Research, 2018, 18(5): foy040.
    [31] ZHANG YY, WANG J, CAO XS, LIU W, YU HW, YE LD. High-level production of linalool by engineered Saccharomyces cerevisiae harboring dual mevalonate pathways in mitochondria and cytoplasm[J]. Enzyme and Microbial Technology, 2020, 134: 109462.
    [32] ZHANG YM, SU M, WANG Z, NIELSEN J, LIU ZH. Rewiring regulation on respiro-fermentative metabolism relieved Crabtree effects in Saccharomyces cerevisiae[J]. Synthetic and Systems Biotechnology, 2022, 7(4): 1034-1043.
    [33] AVALOS JL, FINK GR, STEPHANOPOULOS G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols[J]. Nature Biotechnology, 2013, 31(4): 335-341.
    [34] HAMMER SK, ZHANG YF, AVALOS JL. Mitochondrial compartmentalization confers specificity to the 2-ketoacid recursive pathway: increasing isopentanol production in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2020, 9(3): 546-555.
    [35] LANE S, ZHANG YF, YUN EJ, ZIOLKOWSKI L, ZHANG GC, JIN YS, AVALOS JL. Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2020, 117(2): 372-381.
    [36] ZHANG YF, LANE S, CHEN JM, HAMMER SK, LUTTINGER J, YANG LF, JIN YS, AVALOS JL. Xylose utilization stimulates mitochondrial production of isobutanol and 2-methyl-1-butanol in Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2019, 12(1): 1-15.
    [37] BURÉN S, PRATT K, JIANG X, GUO YS, JIMENEZ-VICENTE E, ECHAVARRI-ERASUN C, DEAN DR, SAAEM I, BENJAMIN GORDON D, VOIGT CA, RUBIO LM. Biosynthesis of the nitrogenase active-site cofactor precursor NifB-co in Saccharomyces cerevisiae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(50): 25078-25086.
    [38] GERKE J, FRAUENDORF H, SCHNEIDER D, WINTERGOLLER M, HOFMEISTER T, POEHLEIN A, ZEBEC Z, TAKANO E, SCRUTTON NS, BRAUS GH. Production of the fragrance geraniol in peroxisomes of a product-tolerant baker’s yeast[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 582052.
    [39] ZHANG CB, LI M, ZHAO GR, LU WY. Harnessing yeast peroxisomes and cytosol acetyl-CoA for sesquiterpene α-humulene production[J]. Journal of Agricultural and Food Chemistry, 2020, 68(5): 1382-1389.
    [40] LIU GS, LI T, ZHOU W, JIANG M, TAO XY, LIU M, ZHAO M, REN YH, GAO B, WANG FQ, WEI DZ. The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction[J]. Metabolic Engineering, 2020, 57: 151-161.
    [41] ZHANG Q, YU SQ, LYU YB, ZENG WZ, ZHOU JW. Systematically engineered fatty acid catabolite pathway for the production of (2S)-naringenin in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2021, 10(5): 1166-1175.
    [42] SHENG JY, STEVENS J, FENG XY. Pathway compartmentalization in peroxisome of Saccharomyces cerevisiae to produce versatile medium chain fatty alcohols[J]. Scientific Reports, 2016, 6: 26884.
    [43] SIBIRNY AA. Yeast peroxisomes: structure, functions and biotechnological opportunities[J]. FEMS Yeast Research, 2016, 16(4): fow038.
    [44] DZANAEVA L, KRUK B, RUCHALA J, NIELSEN J, SIBIRNY A, DMYTRUK K. The role of peroxisomes in xylose alcoholic fermentation in the engineered Saccharomyces cerevisiae[J]. Cell Biology International, 2020, 44(8): 1606-1615.
    [45] THODEY K, GALANIE S, SMOLKE CD. A microbial biomanufacturing platform for natural and semisynthetic opioids[J]. Nature Chemical Biology, 2014, 10(10): 837-844.
    [46] ARENDT P, MIETTINEN K, POLLIER J, de RYCKE R, CALLEWAERT N, GOOSSENS A. An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids[J]. Metabolic Engineering, 2017, 40: 165-175.
    [47] KIM JE, JANG IS, SON SH, KO YJ, CHO BK, KIM SC, LEE JY. Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway[J]. Metabolic Engineering, 2019, 56: 50-59.
    [48] WEI PP, ZHANG CB, BIAN XK, LU WY. Metabolic engineering of Saccharomyces cerevisiae for heterologous carnosic acid production[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 916605.
    [49] BAO JC, HUANG MT, PETRANOVIC D, NIELSEN J. Balanced trafficking between the ER and the golgi apparatus increases protein secretion in yeast[J]. AMB Express, 2018, 8(1): 1-10.
    [50] HUANG MT, WANG GK, QIN JF, PETRANOVIC D, NIELSEN J. Engineering the protein secretory pathway of Saccharomyces cerevisiae enables improved protein production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47): E11025-E11032.
    [51] YU Y, RASOOL A, LIU HR, LV B, CHANG PC, SONG H, WANG Y, LI C. Engineering Saccharomyces cerevisiae for high yield production of α-amyrin via synergistic remodeling of α-amyrin synthase and expanding the storage pool[J]. Metabolic Engineering, 2020, 62: 72-83.
    [52] MANZOOR R, AHMED M, RIAZ N, KIANI BH, KALEEM U, RASHID Y, NAWAZ A, AWAN MUF, KHAN H, IMTIAZ U, RASHEED Y, KALEEM I, RASOOL A. Self-redirection of metabolic flux toward squalene and ethanol pathways by engineered yeast[J]. Metabolites, 2020, 10(2): 56.
    [53] MA T, SHI B, YE ZL, LI XW, LIU M, CHEN Y, XIA J, NIELSEN J, DENG ZX, LIU TG. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene[J]. Metabolic Engineering, 2019, 52: 134-142.
    [54] SUN ZJ, LIAN JZ, ZHU L, JIANG YQ, LI GS, XUE HL, WU MB, YANG LR, LIN JP. Combined biosynthetic pathway engineering and storage pool expansion for high-level production of ergosterol in industrial Saccharomyces cerevisiae[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 681666.
    [55] ZHAO YJ, ZHANG YP, NIELSEN J, LIU ZH. Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism[J]. Biotechnology and Bioengineering, 2021, 118(5): 2043-2052.
    [56] BU X, LIN JY, DUAN CQ, KOFFAS MAG, YAN GL. Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved β-carotene production in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2022, 21(1): 1-13.
    [57] GUO XJ, YAO MD, XIAO WH, WANG Y, ZHAO GR, YUAN YJ. Compartmentalized reconstitution of post-squalene pathway for 7-dehydrocholesterol overproduction in Saccharomyces cerevisiae[J]. Frontiers in Microbiology, 2021, 12: 663973.
    [58] 张思琪, 周景文, 张国强, 陈坚. 产对香豆酸酿酒酵母工程菌株的构建与优化[J]. 生物工程学报, 2020, 36(9): 1838-1848. ZHANG SQ, ZHOU JW, ZHANG GQ, CHEN J. Construction and optimization of p-coumaric acid-producing Saccharomyces cerevisiae[J]. Chinese Journal of Biotechnology, 2020, 36(9): 1838-1848 (in Chinese).
    [59] SRINIVASAN P, SMOLKE CD. Biosynthesis of medicinal tropane alkaloids in yeast[J]. Nature, 2020, 585(7826): 614-619.
    [60] SRINIVASAN P, SMOLKE CD. Engineering cellular metabolite transport for biosynthesis of computationally predicted tropane alkaloid derivatives in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(25): e2104460118.
    [61] KAHAR P, ITOMI A, TSUBOI H, ISHIZAKI M, YASUDA M, KIHIRA C, OTSUKA H, BINTI AZMI N, MATSUMOTO H, OGINO C, KONDO A. The flocculant Saccharomyces cerevisiae strain gains robustness via alteration of the cell wall hydrophobicity[J]. Metabolic Engineering, 2022, 72: 82-96.
    [62] SON SH, KIM JE, OH SS, LEE JY. Engineering cell wall integrity enables enhanced squalene production in yeast[J]. Journal of Agricultural and Food Chemistry, 2020, 68(17): 4922-4929.
    [63] LI J, ZHANG MM, WAN C, den HAAN R, BAI FW, ZHAO XQ. Improved cellulase production in recombinant Saccharomyces cerevisiae by disrupting the cell wall protein-encoding gene CWP2[J]. Journal of Bioscience and Bioengineering, 2020, 129(2): 165-171.
    [64] KONG ML, LI XW, LI TT, ZHAO XB, JIN MJ, ZHOU X, GU HQ, MRŠA V, XIAO W, CAO LM. Overexpressing CCW12 in Saccharomyces cerevisiae enables highly efficient ethanol production from lignocellulose hydrolysates[J]. Bioresource Technology, 2021, 337: 125487.
    [65] INOKUMA K, KURONO H, den HAAN R, van ZYL WH, HASUNUMA T, KONDO A. Novel strategy for anchorage position control of GPI-attached proteins in the yeast cell wall using different GPI-anchoring domains[J]. Metabolic Engineering, 2020, 57: 110-117.
    [66] INOKUMA K, KITADA Y, BAMBA T, KOBAYASHI Y, YUKAWA T, HAAN R, ZYL WH, KONDO A, HASUNUMA T. Improving the functionality of surface-engineered yeast cells by altering the cell wall morphology of the host strain[J]. Applied Microbiology and Biotechnology, 2021, 105(14/15): 5895-5904.
    [67] CHEAH LC, STARK T, ADAMSON LSR, ABIDIN RS, LAU YH, SAINSBURY F, VICKERS CE. Artificial self-assembling nanocompartment for organizing metabolic pathways in yeast[J]. ACS Synthetic Biology, 2021, 10(12): 3251-3263.
    [68] ZHANG Q, ZENG WZ, XU S, ZHOU JW. Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae[J]. Bioresource Technology, 2021, 342: 125978.
    [69] ENGLISH AM, SCHULER MH, XIAO TY, KORNMANN B, SHAW JM, HUGHES AL. ER-mitochondria contacts promote mitochondrial-derived compartment biogenesis[J]. Journal of Cell Biology, 2020, 219(12): e202002144.
    [70] YUAN JF, CHING CB. Mitochondrial acetyl-CoA utilization pathway for terpenoid productions[J]. Metabolic Engineering, 2016, 38: 303-309.
    [71] BUU LM, CHEN YC, LEE FJ S. Functional characterization and localization of acetyl-CoA hydrolase, Ach1p, in Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 2003, 278(19): 17203-17209.
    [72] WEINERT BT, IESMANTAVICIUS V, MOUSTAFA T, SCHÖLZ C, WAGNER SA, MAGNES C, ZECHNER R, CHOUDHARY C. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae[J]. Molecular Systems Biology, 2015, 11(10): 833.
    [73] KRIVORUCHKO A, ZHANG YM, SIEWERS V, CHEN Y, NIELSEN J. Microbial acetyl-CoA metabolism and metabolic engineering[J]. Metabolic Engineering, 2015, 28: 28-42.
    [74] SIKKEMA J, de BONT JA, POOLMAN B. Mechanisms of membrane toxicity of hydrocarbons[J]. Microbiological Reviews, 1995, 59(2): 201-222.
    [75] KWAK S, JIN YS. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective[J]. Microbial Cell Factories, 2017, 16(1): 1-15.
    [76] SALUSJÄRVI L, KANKAINEN M, SOLIYMANI R, PITKÄNEN JP, PENTTILÄ M, RUOHONEN L. Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2008, 7(1): 1-16.
    [77] ZAMPAR GG, KÜMMEL A, EWALD J, JOL S, NIEBEL B, PICOTTI P, AEBERSOLD R, SAUER U, ZAMBONI N, HEINEMANN M. Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast[J]. Molecular Systems Biology, 2013, 9(1): 651.
    [78] HEYLAND J, FU JN, BLANK LM. Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae[J]. Microbiology, 2009, 155(12): 3827-3837.
    [79] KWAK S, JO JH, YUN EJ, JIN YS, SEO JH. Production of biofuels and chemicals from xylose using native and engineered yeast strains[J]. Biotechnology Advances, 2019, 37(2): 271-283.
    [80] KILDEGAARD KR, WANG Z, CHEN Y, NIELSEN J, BORODINA I. Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae[J]. Metabolic Engineering Communications, 2015, 2: 132-136.
    [81] WANG PP, LI CJ, LI XD, HUANG WJ, WANG Y, WANG JL, ZHANG YJ, YANG XM, YAN X, WANG Y, ZHOU ZH. Complete biosynthesis of the potential medicine icaritin by engineered Saccharomyces cerevisiae and Escherichia coli[J]. Science Bulletin, 2021, 66(18): 1906-1916.
    [82] BEACH A, LEONOV A, ARLIA-CIOMMO A, SVISTKOVA V, LUTCHMAN V, TITORENKO V. Mechanisms by which different functional states of mitochondria define yeast longevity[J]. International Journal of Molecular Sciences, 2015, 16(12): 5528-5554.
    [83] GREWAL PS, SAMSON JA, BAKER JJ, CHOI B, DUEBER JE. Peroxisome compartmentalization of a toxic enzyme improves alkaloid production[J]. Nature Chemical Biology, 2021, 17(1): 96-103.
    [84] van ROERMUND CW, HETTEMA EH, KAL AJ, van den BERG M, TABAK HF, WANDERS RJ. Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions[J]. The EMBO Journal, 1998, 17(3): 677-687.
    [85] SCHUELLER N, HOLTON SJ, FODOR K, MILEWSKI M, KONAREV P, STANLEY WA, WOLF J, ERDMANN R, SCHLIEBS W, SONG YH, WILMANNS M. The peroxisomal receptor Pex19p forms a helical mPTS recognition domain[J]. The EMBO Journal, 2010, 29(15): 2491-2500.
    [86] PHILLIPS MJ, VOELTZ GK. Structure and function of ER membrane contact sites with other organelles[J]. Nature Reviews Molecular Cell Biology, 2016, 17(2): 69-82.
    [87] 赵妍, 喻其林. 内质网靶向纳米药物的研究进展[J]. 生物工程学报, 2021, 37(2): 418-428. ZHAO Y, YU QL. Advance in endoplasmic reticulum-targeting nanodrugs[J]. Chinese Journal of Biotechnology, 2021, 37(2): 418-428 (in Chinese).
    [88] HAUSJELL J, HALBWIRTH H, SPADIUT O. Recombinant production of eukaryotic cytochrome P450s in microbial cell factories[J]. Bioscience Reports, 2018, 38(2): BSR20171290.
    [89] NOWROUZI B, RIOS-SOLIS L. Redox metabolism for improving whole-cell P450-catalysed terpenoid biosynthesis[J]. Critical Reviews in Biotechnology, 2022, 42(8): 1213-1237.
    [90] JIANG LH, HUANG L, CAI J, XU ZN, LIAN JZ. Functional expression of eukaryotic cytochrome P450s in yeast[J]. Biotechnology and Bioengineering, 2021, 118(3): 1050-1065.
    [91] ZHENG XY, LI P, LU X. Research advances in cytochrome P450-catalysed pharmaceutical terpenoid biosynthesis in plants[J]. Journal of Experimental Botany, 2019, 70(18): 4619-4630.
    [92] RENAULT H, BASSARD JE, HAMBERGER B, WERCK-REICHHART D. Cytochrome P450-mediated metabolic engineering: current progress and future challenges[J]. Current Opinion in Plant Biology, 2014, 19: 27-34.
    [93] WANG X, PEREIRA JH, TSUTAKAWA S, FANG XY, ADAMS PD, MUKHOPADHYAY A, LEE TS. Efficient production of oxidized terpenoids via engineering fusion proteins of terpene synthase and cytochrome P450[J]. Metabolic Engineering, 2021, 64: 41-51.
    [94] AJIKUMAR PK, XIAO WH, TYO KEJ, WANG Y, SIMEON F, LEONARD E, MUCHA O, PHON TH, PFEIFER B, STEPHANOPOULOS G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli[J]. Science, 2010, 330(6000): 70-74.
    [95] BIGGS BW, LIM CG, SAGLIANI K, SHANKAR S, STEPHANOPOULOS G, de MEY M, AJIKUMAR PK. Overcoming heterologous protein interdependency to optimize P450-mediated taxol precursor synthesis in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(12): 3209-3214.
    [96] KIM JE, JANG IS, SUNG BH, KIM SC, LEE JY. Rerouting of NADPH synthetic pathways for increased protopanaxadiol production in Saccharomyces cerevisiae[J]. Scientific Reports, 2018, 8: 15820.
    [97] ZHUANG X, CHAPPELL J. Building terpene production platforms in yeast[J]. Biotechnology and Bioengineering, 2015, 112(9): 1854-1864.
    [98] MALHOTRA JD, MIAO HZ, ZHANG KZ, WOLFSON A, PENNATHUR S, PIPE SW, KAUFMAN RJ. Antioxidants reduce endoplasmic reticulum stress and improve protein secretion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47): 18525-18530.
    [99] SUDA Y, NAKANO A. The yeast golgi apparatus[J]. Traffic, 2012, 13(4): 505-510.
    [100] IYER P, BHAVE M, JAIN BK, RoyCHOWDHURY S, BHATTACHARYYA D. Vps74p controls golgi size in an Arf1-dependent manner[J]. FEBS Letters, 2018, 592(22): 3720-3735.
    [101] NODA Y, YODA K. Molecular mechanisms of the localization of membrane proteins in the yeast golgi compartments[J]. Bioscience, Biotechnology, and Biochemistry, 2013, 77(3): 435-445.
    [102] SUDA Y, KUROKAWA K, NAKANO A. Regulation of ER-golgi transport dynamics by GTPases in budding yeast[J]. Frontiers in Cell and Developmental Biology, 2018, 5: 122.
    [103] MUNRO S. What is the golgi apparatus, and why are we asking?[J]. BMC Biology, 2011, 9(1): 1-5.
    [104] BAO JC, HUANG MT, PETRANOVIC D, NIELSEN J. Moderate expression of SEC16 increases protein secretion by Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 2017, 83(14): e03400-16.
    [105] OLZMANN JA, CARVALHO P. Dynamics and functions of lipid droplets[J]. Nature Reviews Molecular Cell Biology, 2019, 20(3): 137-155.
    [106] TEIXEIRA PG, DAVID F, SIEWERS V, NIELSEN J. Engineering lipid droplet assembly mechanisms for improved triacylglycerol accumulation in Saccharomyces cerevisiae[J]. FEMS Yeast Research, 2018, 18(6): foy060.
    [107] 柯霞, 沈逸, 曹丽莎, 张博, 柳志强. 酵母中甾醇定向存储转运及理性强化技术研究进展[J]. 生物工程学报, 2021, 37(11): 3975-3987. KE X, SHEN Y, CAO LS, ZHANG B, LIU ZQ. Reinforcement of sterols production through directed storage and transportation in yeast: a review[J]. Chinese Journal of Biotechnology, 2021, 37(11): 3975-3987 (in Chinese).
    [108] HENNE M, GOODMAN JM, HARIRI H. Spatial compartmentalization of lipid droplet biogenesis[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2020, 1865(1): 158499.
    [109] ZONI V, KHADDAJ R, CAMPOMANES P, THIAM AR, SCHNEITER R, VANNI S. Pre-existing bilayer stresses modulate triglyceride accumulation in the ER versus lipid droplets[J]. eLife, 2021, 10: 62886.
    [110] NETTEBROCK NT, BOHNERT M. Born this way-biogenesis of lipid droplets from specialized ER subdomains[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2020, 1865(1): 158448.
    [111] SCHEPERS J, BEHL C. Lipid droplets and autophagy—links and regulations from yeast to humans[J]. Journal of Cellular Biochemistry, 2021, 122(6): 602-611.
    [112] PALAGE AM, WARD VC. Strategies for production of hydrophobic compounds[J]. Current Opinion in Biotechnology, 2022, 75: 102681.
    [113] THIAM AR, BELLER M. The why, when and how of lipid droplet diversity[J]. Journal of Cell Science, 2017, 130(2): 315-324.
    [114] YOKOTA S, GOTOH T. Effects of rubber elongation factor and small rubber particle protein from rubber-producing plants on lipid metabolism in Saccharomyces cerevisiae[J]. Journal of Bioscience and Bioengineering, 2019, 128(5): 585-592.
    [115] WINKLER MBL, NEL L, FRAIN KM, DEDIC E, OLESEN E, PEDERSEN BP. Sterol uptake by the NPC system in eukaryotes: a Saccharomyces cerevisiae perspective[J]. FEBS Letters, 2022, 596(2): 160-179.
    [116] LI SC, KANE PM. The yeast lysosome-like vacuole: endpoint and crossroads[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2009, 1793(4): 650-663.
    [117] BANTA LM, ROBINSON JS, KLIONSKY DJ, EMR SD. Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting[J]. Journal of Cell Biology, 1988, 107(4): 1369-1383.
    [118] KLIONSKY DJ, HERMAN PK, EMR SD. The fungal vacuole: composition, function, and biogenesis[J]. Microbiological Reviews, 1990, 54(3): 266-292.
    [119] KAWANO-KAWADA M, KAKINUMA Y, SEKITO T. Transport of amino acids across the vacuolar membrane of yeast: its mechanism and physiological role[J]. Biological and Pharmaceutical Bulletin, 2018, 41(10): 1496-1501.
    [120] ZHANG WP, DU GC, ZHOU JW, CHEN J. Regulation of sensing, transportation, and catabolism of nitrogen sources in Saccharomyces cerevisiae[J]. Microbiology and Molecular Biology Reviews, 2018, 82(1): e00040-17.
    [121] ORLEAN P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall[J]. Genetics, 2012, 192(3): 775-818.
    [122] CABIB E, ARROYO J. How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall[J]. Nature Reviews Microbiology, 2013, 11(9): 648-655.
    [123] AUESUKAREE C. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation[J]. Journal of Bioscience and Bioengineering, 2017, 124(2): 133-142.
    [124] BOROVIKOVA D, TEPARIĆ R, MRŠA V, RAPOPORT A. Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration[J]. Yeast, 2016, 33(8): 347-353.
    [125] THAK EJ, YOO SJ, MOON HY, KANG HA. Yeast synthetic biology for designed cell factories producing secretory recombinant proteins[J]. FEMS Yeast Research, 2020, 20(2): foaa009.
    [126] WILLIAMS EM, JUNG SM, COFFMAN JL, LUTZ S. Pore engineering for enhanced mass transport in encapsulin nanocompartments[J]. ACS Synthetic Biology, 2018, 7(11): 2514-2517.
    [127] ZHU K, KONG J, ZHAO BX, RONG LX, LIU SQ, LU ZH, ZHANG CY, XIAO DG, PUSHPANATHAN K, FOO JL, WONG A, YU AQ. Metabolic engineering of microbes for monoterpenoid production[J]. Biotechnology Advances, 2021, 53: 107837.
    [128] JIN K, XIA HZ, LIU YF, LI JH, DU GC, LV XQ, LIU L. Compartmentalization and transporter engineering strategies for terpenoid synthesis[J]. Microbial Cell Factories, 2022, 21(1): 1-12.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

栾韬,尹梦琦,王明,康秀龙,赵建志,鲍晓明. 酿酒酵母细胞器区室化合成化学品的研究进展[J]. 生物工程学报, 2023, 39(6): 2334-2358

复制
分享
文章指标
  • 点击次数:603
  • 下载次数: 1320
  • HTML阅读次数: 1190
  • 引用次数: 0
历史
  • 收稿日期:2022-12-25
  • 录用日期:2023-03-07
  • 在线发布日期: 2023-06-20
  • 出版日期: 2023-06-25
文章二维码
您是第5984820位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司