酵母基因组大尺度遗传操纵工具研究进展
作者:
基金项目:

国家自然科学基金(31971351);国家重点研发计划(2021YFC2102500)


Tools for large-scale genetic manipulation of yeast genome
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [83]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基因组大尺度遗传操纵是指对基因组大片段DNA的敲除、整合、易位等遗传改造。相较于小规模基因编辑,基因组大尺度遗传操纵可实现更多遗传信息的同步改造,对于探究多基因相互作用等复杂机制的理解有重要意义。同时,基因组大尺度遗传操纵技术可对基因组开展更大规模的设计重构,甚至创建全新的基因组,在复杂功能重塑方面具有重要创新潜力。酵母是一种重要的真核模式生物,因其安全性和易于操作而被广泛应用。本文系统总结了酵母基因组大尺度遗传操纵的工具包,包括重组酶介导的大尺度操纵、核酸酶介导的大尺度操纵、从头合成大片段DNA以及其他大尺度操纵工具,介绍了它们的基本工作原理与典型应用案例。最后,对大尺度遗传操纵面临的挑战和发展进行了展望。

    Abstract:

    Large-scale genetic manipulation of the genome refers to the genetic modification of large fragments of DNA using knockout, integration and translocation. Compared to small-scale gene editing, large-scale genetic manipulation of the genome allows for the simultaneous modification of more genetic information, which is important for understanding the complex mechanisms such as multigene interactions. At the same time, large-scale genetic manipulation of the genome allows for larger-scale design and reconstruction of the genome, and even the creation of entirely new genomes, with great potential in reconstructing complex functions. Yeast is an important eukaryotic model organism that is widely used because of its safety and easiness of manipulation. This paper systematically summarizes the toolkit for large-scale genetic manipulation of the yeast genome, including recombinase-mediated large-scale manipulation, nuclease-mediated large-scale manipulation, de novo synthesis of large DNA fragments and other large-scale manipulation tools, and introduces their basic working principles and typical application cases. Finally, the challenges and developments in large-scale genetic manipulation are presented.

    参考文献
    [1] NASMYTH K. A prize for proliferation[J]. Cell, 2001, 107(6): 689-701.
    [2] GOFFEAU A, BARRELL BG, BUSSEY H, DAVIS RW, DUJON B, FELDMANN H, GALIBERT F, HOHEISEL JD, JACQ C, JOHNSTON M, LOUIS EJ, MEWES HW, MURAKAMI Y, PHILIPPSEN P, TETTELIN H, OLIVER SG. Life with 6 000 genes[J]. Science, 1996, 274(5287): 546-567.
    [3] POTVIN G, AHMAD A, ZHANG Z. Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: a review[J]. Biochemical Engineering Journal, 2012, 64: 91-105.
    [4] KRAINER FW, DIETZSCH C, HAJEK T, HERWIG C, SPADIUT O, GLIEDER A. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway[J]. Microbial Cell Factories, 2012, 11: 22.
    [5] PADDON CJ, KEASLING JD. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development[J]. Nature Reviews Microbiology, 2014, 12(5): 355-367.
    [6] XU P, QIAO KJ, AHN WS, STEPHANOPOULOS G. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(39): 10848-10853.
    [7] XUE ZX, SHARPE PL, HONG SP, YADAV NS, XIE DM, SHORT DR, DAMUDE HG, RUPERT RA, SEIP JE, WANG J, POLLAK DW, BOSTICK MW, BOSAK MD, MACOOL DJ, HOLLERBACH DH, ZHANG HX, ARCILLA DM, BLEDSOE SA, CROKER K, MCCORD EF, et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica[J]. Nature Biotechnology, 2013, 31(8): 734-740.
    [8] JIN J, WANG Y, YAO MD, GU XL, LI B, LIU H, DING MZ, XIAO WH, YUAN YJ. Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering[J]. Biotechnology for Biofuels, 2018, 11(1): 230.
    [9] PATNAIK R. Engineering complex phenotypes in industrial strains[J]. Biotechnology Progress, 2008, 24(1): 38-47.
    [10] GUO MR, CHENG SB, CHEN GG, CHEN JL. Improvement of lipid production in oleaginous yeast Rhodosporidium toruloides by ultraviolet mutagenesis[J]. Engineering in Life Sciences, 2019, 19(8): 548-556.
    [11] KUMAR A, SERINGHAUS M, BIERY MC, SARNOVSKY RJ, UMANSKY L, PICCIRILLO S, HEIDTMAN M, CHEUNG KH, DOBRY CJ, GERSTEIN MB, CRAIG NL, SNYDER M. Large-scale mutagenesis of the yeast genome using a Tn7-derived multipurpose transposon[J]. Genome Research, 2004, 14(10a): 1975-1986.
    [12] CIRINO PC, MAYER KM, UMENO D. Generating mutant libraries using error-prone PCR[J]. Methods in Molecular Biology. 2003, 231: 3.
    [13] YANG Z, BLENNER M. Genome editing systems across yeast species[J]. Current Opinion in Biotechnology, 2020, 66: 255-266.
    [14] HAN PY, MA Y, FU ZH, GUO Z, XIE JN, WU Y, YUAN YJ. A DNA inversion system in eukaryotes established via laboratory evolution[J]. ACS Synthetic Biology, 2021, 10(9): 2222-2230.
    [15] MITCHELL LA, BOEKE JD. Circular permutation of a synthetic eukaryotic chromosome with the telomerator[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(48): 17003-17010.
    [16] BARBIERI EM, MUIR P, AKHUETIE-ONI BO, YELLMAN CM, ISAACS FJ. Precise editing at DNA replication forks enables multiplex genome engineering in eukaryotes[J]. Cell, 2017, 171(6): 1453-1467.e13.
    [17] CRAVENS A, JAMIL OK, KONG DZ, SOCKOLOSKY JT, SMOLKE CD. Polymerase-guided base editing enables in vivo mutagenesis and rapid protein engineering[J]. Nature Communications, 2021, 12: 1579.
    [18] GRINDLEY NDF, WHITESON KL, RICE PA. Mechanisms of site-specific recombination[J]. Annual Review of Biochemistry, 2006, 75: 567-605.
    [19] SAUER B. Site-specific recombination: developments and applications[J]. Current Opinion in Biotechnology, 1994, 5(5): 521-527.
    [20] AKADA R, KITAGAWA T, KANEKO S, TOYONAGA D, ITO S, KAKIHARA Y, HOSHIDA H, MORIMURA S, KONDO A, KIDA K. PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae[J]. Yeast, 2006, 23(5): 399-405.
    [21] DELNERI D, COLSON I, GRAMMENOUDI S, ROBERTS IN, LOUIS EJ, OLIVER SG. Engineering evolution to study speciation in yeasts[J]. Nature, 2003, 422(6927): 68-72.
    [22] NASEEB S, CARTER Z, MINNIS D, DONALDSON I, ZEEF L, DELNERI D. Widespread impact of chromosomal inversions on gene expression uncovers robustness via phenotypic buffering[J]. Molecular Biology and Evolution, 2016, 33(7): 1679-1696.
    [23] PARK YN, MASISON D, EISENBERG E, GREENE LE. Application of the FLP/FRT system for conditional gene deletion in yeast Saccharomyces cerevisiae[J]. Yeast (Chichester, England), 2011, 28(9): 673-681.
    [24] KARIMOVA M, ABI-GHANEM J, BERGER N, SURENDRANATH V, TERESA PISABARRO M, BUCHHOLZ F. Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system[J]. Nucleic Acids Research, 2013, 41(2): e37.
    [25] LIU W, LUO ZQ, WANG Y, PHAM NT, TUCK L, PÉREZ-PI I, LIU LY, SHEN Y, FRENCH C, AUER M, MARLES-WRIGHT J, DAI JB, CAI YZ. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods[J]. Nature Communications, 2018, 9(1): 1936.
    [26] SAUER B, MCDERMOTT J. DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages[J]. Nucleic Acids Research, 2004, 32(20): 6086-6095.
    [27] THOMASON L, CALENDAR R, OW D. Gene insertion and replacement in Schizosaccharomyces pombe mediated by the Streptomyces bacteriophage φC31 site-specific recombination system[J]. Molecular Genetics and Genomics, 2001, 265(6): 1031-1038.
    [28] XU ZY, BROWN WRA. Comparison and optimization of ten phage encoded serine integrases for genome engineering in Saccharomyces cerevisiae[J]. BMC Biotechnology, 2016, 16(1): 1-10.
    [29] SHEN MJ, WU Y, YANG K, LI YX, XU H, ZHANG HR, LI BZ, LI X, XIAO WH, ZHOU X, MITCHELL LA, BADER JS, YUAN YJ, BOEKE JD. Heterozygous diploid and interspecies SCRaMbLEing[J]. Nature Communications, 2018, 9: 1934.
    [30] JIA B, WU Y, LI BZ, MITCHELL LA, LIU H, PAN S, WANG J, ZHANG HR, JIA N, LI B, SHEN M, XIE ZX, LIU D, CAO YX, LI X, ZHOU X, QI H, BOEKE JD, YUAN YJ. Precise control of SCRaMbLE in synthetic haploid and diploid yeast[J]. Nature Communications, 2018, 9: 1933.
    [31] WANG J, XIE ZX, MA Y, CHEN XR, HUANG YQ, HE B, BIN J, LI BZ, YUAN YJ. Ring synthetic chromosome V SCRaMbLE[J]. Nature Communications, 2018, 9: 3783.
    [32] WU Y, ZHU RY, MITCHELL LA, MA L, LIU R, ZHAO M, JIA B, XU H, LI YX, YANG ZM, MA Y, LI X, LIU H, LIU D, XIAO WH, ZHOU X, LI BZ, YUAN YJ, BOEKE JD. In vitro DNA SCRaMbLE[J]. Nature Communications, 2018, 9: 1935.
    [33] FICKERS P, LE DALL MT, GAILLARDIN C, THONART P, NICAUD JM. New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica[J]. Journal of Microbiological Methods, 2003, 55(3): 727-737.
    [34] SONG PP, LIU S, GUO XN, BAI XJ, HE XP, ZHANG BR. Scarless gene deletion in methylotrophic Hansenula polymorpha by using mazF as counter-selectable marker[J]. Analytical Biochemistry, 2015, 468: 66-74.
    [35] HO SS, URBAN AE, MILLS RE. Structural variation in the sequencing era[J]. Nature Reviews Genetics, 2020, 21(3): 171-189.
    [36] PRETORIUS IS, BOEKE JD. Yeast 2.0—connecting the dots in the construction of the world’s first functional synthetic eukaryotic genome[J]. FEMS Yeast Research, 2018, 18(4): foy032.
    [37] NAGY A. Cre recombinase: the universal reagent for genome tailoring[J]. Genesis, 2000, 26(2): 99-109.
    [38] HOESS RH, WIERZBICKI A, ABREMSKI K. The role of the loxP spacer region in P1 site-specific recombination[J]. Nucleic Acids Research, 1986, 14(5): 2287-2300.
    [39] SHEN Y, STRACQUADANIO G, WANG Y, YANG K, MITCHELL LA, XUE YX, CAI YZ, CHEN T, DYMOND JS, KANG K, GONG JH, ZENG XF, ZHANG YF, LI YR, FENG Q, XU X, WANG J, WANG J, YANG HM, BOEKE JD, BADER JS. SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes[J]. Genome Research, 2016, 26(1): 36-49.
    [40] RICHARDSON SM, MITCHELL LA, STRACQUADANIO G, YANG K, DYMOND JS, DiCARLO JE, LEE D, LAI VICTOR HUANG C, CHANDRASEGARAN S, CAI YZ, BOEKE JD, BADER JS. Design of a synthetic yeast genome[J]. Science, 2017, 355(6329): 1040-1044.
    [41] DAVID F, SIEWERS V. Advances in yeast genome engineering[J]. FEMS Yeast Research, 2015, 15(1): 1-14.
    [42] CARROLL D. Genome engineering with zinc-finger nucleases[J]. Genetics, 2011, 188(4): 773-782.
    [43] MUSSOLINO C, MORBITZER R, LÜTGE F, DANNEMANN N, LAHAYE T, CATHOMEN T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity[J]. Nucleic Acids Research, 2011, 39(21): 9283-9293.
    [44] LIAN JZ, SCHULTZ C, CAO MF, HAMEDIRAD M, ZHAO HM. Multi-functional genome-wide CRISPR system for high throughput genotype-phenotype mapping[J]. Nature Communications, 2019, 10: 5794.
    [45] SOLIS-ESCALANTE D, van den BROEK M, KUIJPERS NGA, PRONK JT, BOLES E, DARAN JM, DARAN-LAPUJADE P. The genome sequence of the popular hexose-transport-deficient Saccharomyces cerevisiae strain EBY.VW4000 reveals LoxP/Cre-induced translocations and gene loss[J]. FEMS Yeast Research, 2015, 15(2): fou004.
    [46] DICARLO JE, NORVILLE JE, MALI P, RIOS X, AACH J, CHURCH GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems[J]. Nucleic Acids Research, 2013, 41(7): 4336-4343.
    [47] EAUCLAIRE SF, ZHANG JZ, RIVERA CG, HUANG LL. Combinatorial metabolic pathway assembly in the yeast genome with RNA-guided Cas9[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(7): 1001-1015.
    [48] TOU CJ, SCHAFFER DV, DUEBER JE. Targeted diversification in the S. cerevisiae genome with CRISPR-guided DNA polymerase I[J]. ACS Synthetic Biology, 2020, 9(7): 1911-1916.
    [49] SADHU MJ, BLOOM JS, DAY L, KRUGLYAK L. CRISPR-directed mitotic recombination enables genetic mapping without crosses[J]. Science, 2016, 352(6289): 1113-1116.
    [50] XU H, HAN MZ, ZHOU SY, LI BZ, WU Y, YUAN YJ. Chromosome drives via CRISPR-Cas9 in yeast[J]. Nature Communications, 2020, 11: 4344.
    [51] LUO JC, SUN XJ, CORMACK BP, BOEKE JD. Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast[J]. Nature, 2018, 560(7718): 392-396.
    [52] SHAO YY, LU N, WU ZF, CAI C, WANG SS, ZHANG LL, ZHOU F, XIAO SJ, LIU L, ZENG XF, ZHENG HJ, YANG C, ZHAO ZH, ZHAO GP, ZHOU JQ, XUE XL, QIN ZJ. Creating a functional single-chromosome yeast[J]. Nature, 2018, 560(7718): 331-335.
    [53] PERNER P. Mining sparse and big data by case-based reasoning[J]. Procedia Computer Science, 2014, 35: 19-33.
    [54] CONG L, RAN FA, COX D, LIN SL, BARRETTO R, HABIB N, HSU PD, WU XB, JIANG WY, MARRAFFINI LA, ZHANG F. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823.
    [55] ZHANG F. Development of CRISPR-Cas systems for genome editing and beyond[J]. Quarterly Reviews of Biophysics, 2019, 52: e6.
    [56] WANG CL, LIWEI M, PARK JB, JEONG SH, WEI GY, WANG YJ, KIM SW. Microbial platform for terpenoid production: Escherichia coli and yeast[J]. Frontiers in Microbiology, 2018, 9: 2460.
    [57] DELTCHEVA E, CHYLINSKI K, SHARMA CM, GONZALES K, CHAO YJ, PIRZADA ZA, ECKERT MR, VOGEL J, CHARPENTIER E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 2011, 471(7340): 602-607.
    [58] JAKOČIŪNAS T, BONDE I, HERRGÅRD M, HARRISON SJ, KRISTENSEN M, PEDERSEN LE, JENSEN MK, KEASLING JD. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2015, 28: 213-222.
    [59] ZHANG YP, WANG J, WANG ZB, ZHANG YM, SHI SB, NIELSEN J, LIU ZH. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae[J]. Nature Communications, 2019, 10: 1053.
    [60] LI ZH, LIU M, LYU XM, WANG FQ, WEI DZ. CRISPR/Cpf1 facilitated large fragment deletion in Saccharomyces cerevisiae[J]. Journal of Basic Microbiology, 2018, 58(12): 1100-1104.
    [61] VERWAAL R, BUITING-WIESSENHAAN N, DALHUIJSEN S, ROUBOS JA. CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae[J]. Yeast, 2018, 35(2): 201-211.
    [62] POSTMA ED, DASHKO S, van BREEMEN L, TAYLOR PARKINS SK, van den BROEK M, DARAN JM, DARAN-LAPUJADE P. A supernumerary designer chromosome for modular in vivo pathway assembly in Saccharomyces cerevisiae[J]. Nucleic Acids Research, 2021, 49(3): 1769-1783.
    [63] POSTMA ED, HASSING EJ, MANGKUSAPUTRA V, GEELHOED J, dela TORRE P, van den BROEK M, MOOIMAN C, PABST M, DARAN JM, DARAN-LAPUJADE P. Modular, synthetic chromosomes as new tools for large scale engineering of metabolism[J]. Metabolic Engineering, 2022, 72: 1-13.
    [64] HUANG SC, GENG AL. High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration[J]. Journal of Biotechnology, 2020, 310: 13-20.
    [65] WENINGER A, HATZL AM, SCHMID C, VOGL T, GLIEDER A. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris[J]. Journal of Biotechnology, 2016, 235: 139-149.
    [66] HORWITZ AA, WALTER JM, SCHUBERT MG, KUNG SH, HAWKINS K, PLATT DM, HERNDAY AD, MAHATDEJKUL-MEADOWS T, SZETO W, CHANDRAN SS, NEWMAN JD. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-cas[J]. Cell Systems, 2015, 1(1): 88-96.
    [67] NUMAMOTO M, MAEKAWA H, KANEKO Y. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha[J]. Journal of Bioscience and Bioengineering, 2017, 124(5): 487-492.
    [68] GIBSON DG, GLASS JI, LARTIGUE C, NOSKOV VN, CHUANG RY, ALGIRE MA, BENDERS GA, MONTAGUE MG, MA L, MOODIE MM, MERRYMAN C, VASHEE S, KRISHNAKUMAR R, ASSAD-GARCIA N, ANDREWS-PFANNKOCH C, DENISOVA EA, YOUNG L, QI ZQ, SEGALL-SHAPIRO TH, CALVEY CH, et al. Creation of a bacterial cell controlled by a chemically synthesized genome[J]. Science, 2010, 329(5987): 52-56.
    [69] DYMOND JS, RICHARDSON SM, COOMBES CE, BABATZ T, MULLER H, ANNALURU N, BLAKE WJ, SCHWERZMANN JW, DAI JB, LINDSTROM DL, BOEKE AC, GOTTSCHLING DE, CHANDRASEGARAN S, BADER JS, BOEKE JD. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design[J]. Nature, 2011, 477(7365): 471-476.
    [70] ANNALURU N, MULLER H, MITCHELL LA, RAMALINGAM S, STRACQUADANIO G, RICHARDSON SM, DYMOND JS, KUANG Z, SCHEIFELE LZ, COOPER EM, CAI YZ, ZELLER K, AGMON N, HAN JS, HADJITHOMAS M, TULLMAN J, CARAVELLI K, CIRELLI K, GUO ZY, LONDON V, et al. Total synthesis of a functional designer eukaryotic chromosome[J]. Science, 2014, 344(6179): 55-58.
    [71] ZHANG WM, LAZAR-STEFANITA L, YAMASHITA H, SHEN MJ, MITCHELL LA, KURASAWA H, HAASE MAB, SUN XJ, JIANG QW, LAUER SL, MCCULLOCH LH, ZHAO Y, ICHIKAWA DM, EASO N, LIN SJ, FANFANI V, CAMELLATO BR, ZHU YN, CAI JT, XU ZW, et al. Manipulating the 3D organization of the largest synthetic yeast chromosome[J]. SSRN Electronic Journal, 2022: 2022.04. 09.487066.
    [72] XIE ZX, LI BZ, MITCHELL LA, WU Y, QI X, JIN Z, JIA B, WANG X, ZENG BX, LIU HM, WU XL, FENG Q, ZHANG WZ, LIU W, DING MZ, LI X, ZHAO GR, QIAO JJ, CHENG JS, ZHAO M, et al. Perfect designer chromosome V and behavior of a ring derivative[J]. Science, 2017, 355(6329): eaaf4704.
    [73] MITCHELL LA, WANG A, STRACQUADANIO G, KUANG Z, WANG XY, YANG K, RICHARDSON S, MARTIN JA, ZHAO Y, WALKER R, LUO YS, DAI HJ, DONG K, TANG ZJ, YANG YL, CAI YZ, HEGUY A, UEBERHEIDE B, FENYÖ D, DAI JB, et al. Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond[J]. Science, 2017, 355(6329): eaaf4831.
    [74] SHEN Y, WANG Y, CHEN T, GAO F, GONG JH, ABRAMCZYK D, WALKER R, ZHAO HC, CHEN SH, LIU W, LUO YS, MÜLLER CA, PAUL-DUBOIS-TAINE A, ALVER B, STRACQUADANIO G, MITCHELL LA, LUO ZQ, FAN YQ, ZHOU BJ, WEN B, et al. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome[J]. Science, 2017, 355(6329): eaaf4791.
    [75] WU Y, LI BZ, ZHAO M, MITCHELL LA, XIE ZX, LIN QH, WANG X, XIAO WH, WANG Y, ZHOU X, LIU H, LI X, DING MZ, LIU D, ZHANG L, LIU BL, WU XL, LI FF, DONG XT, JIA B, et al. Bug mapping and fitness testing of chemically synthesized chromosome X[J]. Science, 2017, 355(6329): eaaf4706.
    [76] ZHANG WM, ZHAO GH, LUO ZQ, LIN YC, WANG LH, GUO YK, WANG A, JIANG SY, JIANG QW, GONG JH, WANG Y, HOU S, HUANG J, LI TY, QIN YR, DONG JK, QIN Q, ZHANG JY, ZOU XZ, HE X, et al. Engineering the ribosomal DNA in a megabase synthetic chromosome[J]. Science, 2017, 355(6329): eaaf3981.
    [77] SHAO ZY, ZHAO H, ZHAO HM. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways[J]. Nucleic Acids Research, 2009, 37(2): e16.
    [78] KUTYNA DR, ONETTO CA, WILLIAMS TC, GOOLD HD, PAULSEN IT, PRETORIUS IS, JOHNSON DL, BORNEMAN AR. Construction of a synthetic Saccharomyces cerevisiae pan-genome neo-chromosome[J]. Nature Communications, 2022, 13(1): 3628.
    [79] BOEKE JD, CHURCH G, HESSEL A, KELLEY NJ, ARKIN A, CAI YZ, CARLSON R, CHAKRAVARTI A, CORNISH VW, HOLT L, ISAACS FJ, KUIKEN T, LAJOIE M, LESSOR T, LUNSHOF J, MAURANO MT, MITCHELL LA, RINE J, ROSSER S, SANJANA NE, et al. The genome project-write[J]. Science, 2016, 353(6295): 126-127.
    [80] DICARLO JE, CONLEY AJ, PENTTILÄ M, JÄNTTI J, WANG HH, CHURCH GM. Yeast oligo-mediated genome engineering (YOGE)[J]. ACS Synthetic Biology, 2013, 2(12): 741-749.
    [81] CHEN YT, HYSOLLI E, CHEN AL, CASPER S, LIU SL, YANG K, LIU CL, CHURCH G. Multiplex base editing to convert TAG into TAA codons in the human genome[J]. Nature Communications, 2022, 13: 4482.
    [82] GUO Z, YIN HY, MA L, LI JY, MA JJ, WU Y, YUAN YJ. Direct transfer and consolidation of synthetic yeast chromosomes by abortive mating and chromosome elimination[J]. ACS Synthetic Biology, 2022, 11(10): 3264-3272.
    [83] LI LP, BLANKENSTEIN T. Generation of transgenic mice with megabase-sized human yeast artificial chromosomes by yeast spheroplast-embryonic stem cell fusion[J]. Nature Protocols, 2013, 8(8): 1567-1582.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李杰奕,佟函泽,吴毅. 酵母基因组大尺度遗传操纵工具研究进展[J]. 生物工程学报, 2023, 39(6): 2465-2484

复制
分享
文章指标
  • 点击次数:329
  • 下载次数: 1391
  • HTML阅读次数: 1136
  • 引用次数: 0
历史
  • 收稿日期:2023-04-11
  • 录用日期:2023-06-05
  • 在线发布日期: 2023-06-20
  • 出版日期: 2023-06-25
文章二维码
您是第5984836位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司