代谢工程改造大肠杆菌生产尸胺
作者:
基金项目:

江苏省农业科技自主创新资金[CX(23)2005, CX(22)1012]


Metabolic engineering of Escherichia coli for the production of cadaverine
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    尸胺是聚酰胺生产中的关键C5单体。由于细胞内5ʹ-磷酸吡哆醛(pyridoxal 5′-phosphate, PLP)再生效率有限,导致目前发酵法生产尸胺效率较低。本研究选择一株实验室保藏的赖氨酸高产大肠杆菌LY-4为研究对象,首先通过引入尸胺合成关键酶-赖氨酸脱羧酶(lysine decarboxylase, LDC),成功构建了菌株L01,摇瓶发酵尸胺产量达1.07 g/L;随后开发了一种双代谢通路强化策略,协同增强内源和异源PLP合成模块,从而改善胞内PLP的合成,最优菌株L11摇瓶生产尸胺产量提升至9.23 g/L;最后在5 L发酵罐中对菌株L11生产尸胺的发酵工艺进行优化。工程菌株经48 h分批补料发酵,尸胺产量、得率、生产强度分别为54.43 g/L、0.22 g/g和1.13 g/(L·h),具备一定的应用潜力。本研究可为构建包括尸胺在内的多种生物胺类细胞工厂提供理论依据和技术基础。

    Abstract:

    Cadaverine is a fundamental C5 building block in the production of polyamides. Due to the limited regeneration efficiency of intracellular pyridoxal 5′-phosphate (PLP), the current fermentation-based production of cadaverine exhibits low efficiency. In this study, we developed an Escherichia coli strain L01 by introducing lysine decarboxylase (lysine decarboxylase, LDC, a key enzyme in the synthesis of cadaverine) into a lysine-producing strain E. coli LY-4, achieving a cadaverine tier of 1.07 g/L in shake flask fermentation. Subsequently, a dual metabolic pathway enhancement strategy was proposed to synergistically strengthen both endogenous and exogenous PLP synthesis modules, thereby improving intracellular PLP synthesis. The optimized strain L11 achieved a cadaverine titer of 9.23 g/L in shake flask fermentation. Finally, the fermentation process for cadaverine production by strain L11 was optimized in a 5 L fermenter. After 48 h of fed-batch fermentation, the engineered strain L11 achieved the cadaverine titer, yield, and productivity of 54.43 g/L, 0.22 g/g, and 1.13 g/(L·h), respectively. This study provides a theoretical and technical foundation for establishing microbial cell factories for bioamine production.

    参考文献
    [1] WANG X, GUO X, WANG J, LI H, HE F, XU S, CHEN KQ, OUYANG PK. Ameliorating end-product inhibition to improve cadaverine production in engineered Escherichia coli and its application in the synthesis of bio-based diisocyanates[J]. Synthetic and Systems Biotechnology, 2021, 6(4): 243-253.
    [2] HUANG YH, JI XL, MA ZL, ŁĘŻYK M, XUE YJ, ZHAO H. Green chemical and biological synthesis of cadaverine: recent development and challenges[J]. RSC Advances, 2021, 11(39): 23922-23942.
    [3] JANCEWICZ AL, GIBBS NM, MASSON PH. Cadaverine’s functional role in plant development and environmental response[J]. Frontiers in Plant Science, 2016, 7: 870.
    [4] CHENG J, CHEN P, SONG AD, WANG D, WANG QH. Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(8): 719-734.
    [5] TeSLAA T, RALSER M, FAN J, RABINOWITZ JD. The pentose phosphate pathway in health and disease[J]. Nature Metabolism, 2023, 5: 1275-1289.
    [6] TUNCA S, BARREIRO C, SOLA-LANDA A, COQUE JJR, MARTÍN JF. Transcriptional regulation of the desferrioxamine gene cluster of Streptomyces coelicolor is mediated by binding of DmdR1 to an iron box in the promoter of the desA gene[J]. The FEBS Journal, 2007, 274(4): 1110-1122.
    [7] MA ZL, QIN SJ, YAO Y, XIN ZW, LUAN LK, ZHANG YQ, HUANG YH. Directed synthesis of nylon 5X key monomer cadaverine with alkaline metal modified Ru@FAU catalysts[J]. Applied Catalysis A: General, 2023, 658: 119172.
    [8] ZHAO CH, ZHENG TR, FENG YH, WANG X, ZHANG LZ, HU QT, CHEN JC, WU FQ, CHEN GQ. Engineered Halomonas spp. for production of l-lysine and cadaverine[J]. Bioresource Technology, 2022, 349: 126865.
    [9] GAO SY, ZHANG AL, MA D, ZHANG K, WANG J, WANG X, CHEN KQ. Enhancing pH stability of lysine decarboxylase via rational engineering and its application in cadaverine industrial production[J]. Biochemical Engineering Journal, 2022, 186: 108548.
    [10] DU Y, PU ZJ, KANG H, MI JL, LIU SM, QI HS, ZHANG L. Zwitterionic peptides encircling-assisted enhanced catalytic performance of lysine decarboxylase for cadaverine biotransformation and mechanism analyses[J]. Chemical Engineering Science, 2022, 251: 117447.
    [11] TING WW, YU JY, LIN YC, NG IS. Enhanced recombinant carbonic anhydrase in T7RNAP-equipped Escherichia coli W3110 for carbon capture storage and utilization (CCSU)[J]. Bioresource Technology, 2022, 363: 128010.
    [12] LI WN, MA L, SHEN XL, WANG J, FENG Q, LIU LX, ZHENG GJ, YAN YJ, SUN XX, YUAN QP. Targeting metabolic driving and intermediate influx in lysine catabolism for high-level glutarate production[J]. Nature Communications, 2019, 10: 3337.
    [13] QIAN ZG, XIA XX, LEE SY. Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine[J]. Biotechnology and Bioengineering, 2011, 108(1): 93-103.
    [14] KIM HT, BARITUGO KA, HYUN SM, KHANG TU, SOHN YJ, KANG KH, JO SY, SONG BK, PARK K, KIM IK, HWANG YT, LEE SY, PARK SJ, JOO JC. Development of metabolically engineered Corynebacterium glutamicum for enhanced production of cadaverine and its use for the synthesis of bio-polyamide 510[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1): 129-138.
    [15] DAJNOWICZ S, JOHNSTON RC, PARKS JM, BLAKELEY MP, KEEN DA, WEISS KL, GERLITS O, KOVALEVSKY A, MUESER TC. Direct visualization of critical h敹?扲楯潧獥祮渠瑡桴敯獭楳猠?潮映?瀠数湹瑲慩湤敯摸楡慬洠椵渦攣?昹爷漻洭?瑨桯敳?獨畡扴瑥爠潥灮楺捹慭汥?獊潝椮氠?浡楴捵牲潥漠牃杯慭湭極獮浩獣孡?嵩??乳愬渠渲椰渱朷???漺挠琹漵爵愮氼??椾獛猱收牝琠慗瑅楉漠湇?漬映??畅慎渠杙砬椠?啈湏楕瘠敎爬猠楌瑕礠??水?????椬渠??桁楎湇攠獁敌???扈牅?嬠??崬?住单?剁??吠??儮??佨?婴乩??奢?乯??呬坹??塲唠?????婴??丠??塬??剳?佦?婩????楴漠换桩敯浣楡捴慡汬?捳桴愠牯慦挠瑰敹牲楩穤慯瑸楡潬渠‵愦渣搶?猷琻爭異捨瑯畳牰慨污?楥渠獡楮杤栠瑬?楬湹瑳潩?楥渠瑤敥牣慡捲瑢楯潸湹?慡湳摥?捊潝渮映潃牨浥慭瑩楣潡湬?浅敮捧桩慮湥楥獲浩獮?漠晊??楲?卡敬爬爠愲琰椲愲?洠愴爲挷攺猠挱攳渲猰??椮??汲社獛椱渷敝?摍敏捏慎爠扙潍砬礠汙慁獎敇???椬?千浈??椠?捒愬搠??孎?崠???漠汓敏捎畇氠效獓???ぁ?ㄠ??水???????????扈牁?孉休?嵓??传啇??奁??婒??佐??????唠????半??丠????夠??儮??婮??乮??偤?????婵???卯啮丠????????奥????栠慢特愠捴瑨敥爠楡穤慤瑩楴潩湯?漠景?愠?湥數睡?汥祣獹楬湴敲?摭敥捴慨特扬潡硭祭汯慮獩敵?映牢潲浯??楤??汴楯椠癷楨扯牬楥漠?獥慬汬洠潳湹楳捴楥摭愠??楴??晲潥牧?据慥摲慡癴敩牯楮渠敯?瀠牰潹摲畩捤瑯楸潡湬?愵琦?愶氹欷愻氭楰湨敯?灰?孡?嵥???潤甠牁湔慐汛?潝昮??潮決敹捭略氠慡牮??慍瑩慣汲祯獢楩獡?????湨穮祯浬慯瑧楹挬?′日?????????‵匸???匮????扛爱?孝㈠?嵁?剗佃匬?乃??删??????十????????呈???佋??????唠?????噉椠瑙愬洠楏湕????洠敐瑋愮戠潅汮楧獩浮?楥湲?浮楧挠牡漠扰敹獲?慤湯摸?慬瀠瀵爦漣愶挹样攻猭?晨潯牳?晨敡牴浥攠湳瑵慰瑰楬癹攠?灯牲漠摣畡捤瑡楶潥湲孩?嵥???楯潤瑵散捴桩湯潮氠潢杹礠??摩癮慧渠挼敩猾???と???????ㄠ??????????扨牯?孥木?嵥???啢??塣?????????????奓???呮??书?婣娠??坰?乲??夬夠?‰圱?丬?‵吺??‵??唰?值??夾啛?丹?儠兇??????坑??????升奁??婃??乙???圬??偕爠潇瑐攬椠湓?敎湇朠楗測攠敗牕椠湊本?慌湉摕?楌瑍攬爠慃瑈楅癎攠?浌甮氠瑅楮浧潩摮略汥敲?潮灧琠業浩楣穲慯瑢楩潡湬?晣潥牬?瘠楶瑩慡浢楩湬????灦牯潲搠略据瑨楡潮湣?楮湧??楨??獩捣桡敬爠楰捲桯楤慵?捴潩汯楮??楹?孳?嵣??乤愠瑣畯牤敯??潥浮浧畩湮楥捥慲瑩楮潧湛獊??㈠き??????????の??扮牥?孲??嵧???丰????唷???唲吳匵??????????堲估偝传啘?佅匠????婉??伬??奁?????????佁啎則?????呚????啌?吠??????啃??奌??删??????乕?剓?丬?南??升丠???删????偤????????佳啰剨奡?坥????楴湨歡慳来敳?扐敤瑸睓支敐湤?瑔栠敡?扥愠捲瑥敱牵楩慲汥?愠捦楯摲?猼瑩爾敁獣獴?慮湯摢?獣瑩牬楬湵杳攠湰瑬?牵敲獯灰潮湥獵敭獯??瑡桥攼?獩琾爠當捩瑡畢物敬?潴晹?琠桳整?楥湳摳甠捴楯扬汥敲?汮祣獥椠湡敮?搠敶捩慲牵扬潥确祣汥慛獊敝嬮?嵐??呓栠敏????伲‰?漷甬爠渱愲氨??呼?????????????????????才爠?孈水?嵋?塍唠??????奉啎?告???乂???卉???湋本椠湓故敏爠楈湍本?灋祉牍椠摙潇砬愠汌?歅椠湙態猬攠?偁摎硇夠?楈測琠敐杁牒態琠敋搮??楰??獩捣桡整物楯据栠楯慦?捤潩汥楴??楬??獴瑨牯慸楹湭?慴湨摹?潥灮瑥業浡楬穯慮瑡楴潥渠?晄潅牅?桍椩朠桤?汲敩癶敡汴???慴浩楯湮漠汦敯癲甠汭楯湮楩捴?慲捩楮摧?灯牦漠摬畹捳瑩楮潥渠孤?嵣???潯畸特湬慡汳?漠晡?瑴桩敶?呴慹楛睊慝渮??湯獵瑲楮瑡畬琠敯?漠晍??桥散浵楬捡慲氠??湴条楬湹敳敩牳猠??㈠ぅ??????ど?????????戱爱?嬺??崵?刭伱匵?丮??割?????夠?????????佇??????唠???????瑥睮潺?獭瑡整灩?攠癥潶污畬瑵楡潴湩慯牮礠?灬牡潴捦敯獲獭?攨獄瑅慅扐氩椠獴桯攠獦?慮?渭潴湵?湩慮瑧椠癰敹?癩楤瑯慸浡楬渠‵???瀹愷琻栭睰慨祯?楰湨??楥??慥捰楥汮汤略獮?猠異扲瑯楴汥楩獮??楦?孲?嵣???湶癥楲物潮湥洠数湲瑯慤汵??楩捯牮潛扊楝漮氠潂杩祯???と?????べ??????????????扥牲?孮??崠′??″?圠?′夰?丱??堠??′夭唲??圮??奲???????椁朮栠?禎椟敩氈搐?瞌棺澄沰斄?挭敖氨汸?抧楶濺珠禄溟瓽桴斚玌榁珘—潶晛?湝礮氠潗溁?ㄠ??洧潦湚濫浦敍犺?眬椠琲栰?猹攮氠映?獅畎晇映楊挮椠敆湵瑮?獴畩灯灮污祬?潩晤?浮畴汩瑦楩灣污整?捯潮映慡据瑤漠牳獩孴?崭???敥瑣慴扥潤氠業捵??湧来楮湥敳敩牳椠湯杦???ぶ?ぬ??????????????rboxylase genes for th
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘存萍,高聪,李晓敏,陈修来,吴静,宋伟,魏婉清,刘立明. 代谢工程改造大肠杆菌生产尸胺[J]. 生物工程学报, 2024, 40(8): 2403-2417

复制
分享
文章指标
  • 点击次数:385
  • 下载次数: 598
  • HTML阅读次数: 403
  • 引用次数: 0
历史
  • 收稿日期:2024-02-26
  • 在线发布日期: 2024-08-08
  • 出版日期: 2024-08-25
文章二维码
您是第5984598位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司