萜类化合物微生物合成中酶工程的研究进展与展望
作者:
基金项目:

国家自然科学基金(32161133019, 32301228); ANSO 青年人才奖学金


Enzyme engineering in microbial biosynthesis of terpenoids: progress and perspectives
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    萜类化合物以其结构与功能的多样性而闻名,在食品、化妆品、洗涤用品中广泛应用。微生物合成是萜类化合物绿色可持续生产的方式之一,近年来备受关注。然而,参与萜类物质合成的天然酶存在催化活性低、特异性差、稳定性不足等问题,限制了萜类化合物的微生物生产效率。酶工程是酶蛋白结构及功能改造优化的重要手段。近年来研究人员通过使用不同的酶工程策略,使萜类合成相关酶的活性、选择性、稳定性得到了明显提升,为萜类化合物的可持续生产提供有力支持。本文综述了近年来微生物合成萜类物质关键酶改造的工程策略,包括提高酶活性、稳定性、改变特异性以及多酶协同促进传质等;同时展望了酶工程技术在萜类微生物合成中面临的挑战及未来发展方向。

    Abstract:

    Terpenoids, known for their structural and functional diversity, are highly valued, especially in food, cosmetics, and cleaning products. Microbial biosynthesis has emerged as a sustainable and environmentally friendly approach for the production of terpenoids. However, the natural enzymes involved in the synthesis of terpenoids have problems such as low activity, poor specificity, and insufficient stability, which limit the biosynthesis efficiency. Enzyme engineering plays a pivotal role in the microbial synthesis of terpenoids. By modifying the structures and functions of key enzymes, researchers have significantly improved the catalytic activity, specificity, and stability of enzymes related to terpenoid synthesis, providing strong support for the sustainable production of terpenoids. This article reviews the strategies for the modification of key enzymes in microbial synthesis of terpenoids, including improving enzyme activity and stability, changing specificity, and promoting mass transfer through multi-enzyme collaboration. Additionally, this article looks forward to the challenges and development directions of enzyme engineering in the microbial synthesis of terpenoids.

    参考文献
    [1] WANG YH, XU HC, ZOU J, CHEN XB, ZHUANG YQ, LIU WL, CELIK E, CHEN GD, HU D, GAO H, WU RB, SUN PH, DICKSCHAT JS. Catalytic role of carbonyl oxygens and water in selinadiene synthase[J]. Nature Catalysis, 2022, 5: 128-135.
    [2] THOLL D. Biosynthesis and biological functions of terpenoids in plants[J]. Advances in Biochemical Engineering/Biotechnology, 2015, 148: 63-106.
    [3] WEHRS M, GLADDEN JM, LIU YZ, PLATZ L, PRAHL JP, MOON J, PAPA G, SUNDSTROM E, GEISELMAN GM, TANJORE D, KEASLING JD, PRAY TR, SIMMONS BA, MUKHOPADHYAY A. Sustainable bioproduction of the blue pigment indigoidine: expanding the range of heterologous products in R. toruloides to include non-ribosomal peptides[J]. Green Chemistry, 2019, 21(12): 3394-3406.
    [4] BUREAU JA, OLIVA ME, DONG YM, IGNEA C. Engineering yeast for the production of plant terpenoids using synthetic biology approaches[J]. Natural Product Reports, 2023, 40(12): 1822-1848.
    [5] ZHU K, KONG J, ZHAO BX, RONG LX, LIU SQ, LU ZH, ZHANG CY, XIAO DG, PUSHPANATHAN K, FOO JL, WONG A, YU AQ. Metabolic engineering of microbes for monoterpenoid production[J]. Biotechnology Advances, 2021, 53: 107837.
    [6] ZHANG G, WANG H, ZHANG Z, VERSTREPEN KJ, WANG QH, DAI ZJ. Metabolic engineering of Yarrowia lipolytica for terpenoids production: advances and perspectives[J]. Critical Reviews in Biotechnology, 2022, 42(4): 618-633.
    [7] HU ZH, LI HX, WENG YR, LI P, ZHANG CY, XIAO DG. Improve the production of d-limonene by regulating the mevalonate pathway of Saccharomyces cerevisiae during alcoholic beverage fermentation[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(12): 1083-1097.
    [8] PHULARA SC, RAJPUT VS, MAZUMDAR B, RUNTHALA A. Metabolic and enzyme engineering for the microbial production of anticancer terpenoids[M]. Essentials of Cancer Genomic, Computational Approaches and Precision Medicine. Singapore: Springer, 2020: 237-259.
    [9] XIAO H, ZHANG Y, WANG M. Discovery and engineering of cytochrome P450s for terpenoid biosynthesis[J]. Trends in Biotechnology, 2019, 37(6): 618-631.
    [10] STEINER K, SCHWAB H. Recent advances in rational approaches for enzyme engineering[J]. Computational and Structural Biotechnology Journal, 2012, 2: e201209010.
    [11] DIAZ JE, LIN CS, KUNISHIRO K, FELD BK, AVRANTINIS SK, BRONSON J, GREAVES J, SAVEN JG, WEISS GA. Computational design and selections for an engineered, thermostable terpene synthase[J]. Protein Science: a Publication of the Protein Society, 2011, 20(9): 1597-1606.
    [12] GREENHAGEN BT, O’MAILLE PE, NOEL JP, CHAPPELL J. Identifying and manipulating structural determinates linking catalytic specificities in terpene synthases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(26): 9826-9831.
    [13] BILAL M, IQBAL HMN. Tailoring multipurpose biocatalysts via protein engineering approaches: a review[J]. Catalysis Letters, 2019, 149(8): 2204-2217.
    [14] CHEN HL, LIU CQ, LI MJ, ZHANG HB, XIAN M, LIU HZ. Directed evolution of mevalonate kinase in Escherichia coli by random mutagenesis for improved lycopene[J]. RSC Advances, 2018, 8(27): 15021-15028.
    [15] CHEN HL, LI MJ, LIU CQ, ZHANG HB, XIAN M, LIU HZ. Enhancement of the catalytic activity of isopentenyl diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis[J]. Microbial Cell Factories, 2018, 17(1): 65.
    [16] DIETRICH JA, YOSHIKUNI Y, FISHER KJ, WOOLARD FX, OCKEY D, McPHEE DJ, RENNINGER NS, CHANG MCY, BAKER D, KEASLING JD. A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450(BM3)[J]. ACS Chemical Biology, 2009, 4(4): 261-267.
    [17] EDGAR S, LI FS, QIAO KJ, WENG JK, STEPHANOPOULOS G. Engineering of taxadiene synthase for improved selectivity and yield of a key taxol biosynthetic intermediate[J]. ACS Synthetic Biology, 2017, 6(2): 201-205.
    [18] TASHIRO M, KIYOTA H, KAWAI-NOMA S, SAITO K, IKEUCHI M, IIJIMA Y, UMENO D. Bacterial production of pinene by a laboratory-evolved pinene-synthase[J]. ACS Synthetic Biology, 2016, 5(9): 1011-1020.
    [19] STYLES MQ, NESBITT EA, MARR S, HUTCHBY M, LEAK DJ. Characterization of the first naturally thermostable terpene synthases and development of strategies to improve thermostability in this family of enzymes[J]. The FEBS Journal, 2017, 284(11): 1700-1711.
    [20] ZI JC, PETERS RJ. Characterization of CYP76AH4 clarifies phenolic diterpenoid biosynthesis in the Lamiaceae[J]. Organic & Biomolecular Chemistry, 2013, 11(44): 7650.
    [21] CHANG MCY, EACHUS RA, TRIEU W, RO DK, KEASLING JD. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s[J]. Nature Chemical Biology, 2007, 3: 274-277.
    [22] TARSHIS LC, YAN MJ, POULTER CD, SACCHETTINI JC. Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-.ANG. resolution[J]. Biochemistry, 1994, 33(36): 10871-10877.
    [23] IGNEA C, PONTINI M, MAFFEI ME, MAKRIS AM, KAMPRANIS SC. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase[J]. ACS Synthetic Biology, 2014, 3(5): 298-306.
    [24] IGNEA C, PONTINI M, MOTAWIA MS, MAFFEI ME, MAKRIS AM, KAMPRANIS SC. Synthesis of 11-carbon terpenoids in yeast using protein and metabolic engineering[J]. Nature Chemical Biology, 2018, 14: 1090-1098.
    [25] PAZOUKI L, NIINEMETS Ü. Multi-substrate terpene synthases: their occurrence and physiological significance[J]. Frontiers in Plant Science, 2016, 7: 1019.
    [26] YOSHIKUNI Y, FERRIN TE, KEASLING JD. Designed divergent evolution of enzyme function[J]. Nature, 2006, 440: 1078-1082.
    [27] IGNEA C, IOANNOU E, GEORGANTEA P, LOUPASSAKI S, TRIKKA FA, KANELLIS AK, MAKRIS AM, ROUSSIS V, KAMPRANIS SC. Reconstructing the chemical diversity of labdane-type diterpene biosynthesis in yeast[J]. Metabolic Engineering, 2015, 28: 91-103.
    [28] ZHA WL, ZHANG F, SHAO JQ, MA XM, ZHU JX, SUN PH, WU RB, ZI JC. Rationally engineering santalene synthase to readjust the component ratio of sandalwood oil[J]. Nature Communications, 2022, 13: 2508.
    [29] LIU Q, XUN GH, FENG Y. The state-of-the-art strategies of protein engineering for enzyme stabilization[J]. Biotechnology Advances, 2019, 37(4): 530-537.
    [30] DANIEL RM, DANSON MJ, HOUGH DW, LEE CK, COWAN DA. Enzyme Stability and Activity at High Temperatures[M]. Nova Science Publishers, 2008.
    [31] LI MJ, YANG RM, GUO J, LIU M, YANG JM. Optimization of IspSib stability through directed evolution to improve isoprene production[J]. Applied and Environmental Microbiology, 2023, 89(10): e0121823.
    [32] YOSHIKUNI Y, DIETRICH JA, NOWROOZI FF, BABBITT PC, KEASLING JD. Redesigning enzymes based on adaptiveHAO ZK. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production[J]. Journal of the American Chemical Society, 2012, 134(6): 3234-3241.
    [52] WANG YJ, XUE P, CAO MF, YU TH, LANE ST, ZHAO HM. Directed evolution: methodologies and applications[J]. Chemical Reviews, 2021, 121(20): 12384-12444.
    [53] ZHANG F, ZENG T, WU RB. QM/MM modeling aided enzyme engineering in natural products biosynthesis[J]. Journal of Chemical Information and Modeling, 2023, 63(16): 5018-5034.
    [54] HWANG HG, YE DY, JUNG GY. Biosensor-guided discovery and engineering of metabolic enzymes[J]. Biotechnology Advances, 2023, 69: 108251.
    [55] KIM SK, KIM SH, SUBHADRA B, WOO SG, RHA E, KIM SW, KIM H, LEE DH, LEE SG. A genetically encoded biosensor for monitoring isoprene production in engineered Escherichia coli[J]. ACS Synthetic Biology, 2018, 7(10): 2379-?390.
    [56] LOU TT, LI AN, XU HC, PAN JF, XING BY, WU RB, DICKSCHAT JS, YANG DH, MA M. Structural insights into three sesquiterpene synthases for the biosynthesis of tricyclic sesquiterpenes and chemical space expansion by structure-based mutagenesis[J]. Journal of the American Ch?mical Society, 2023, 145(15): 8474-8485.
    [57] BAKER D. What has de novo protein design taught us about protein folding and biophysics?[J]. Protein Science, 2019, 28(4): 678-683.
    [58] RAPP JT, BREMER BJ, ROMERO PA. Self-driving laboratories to autonomously navigate the protein fitness landscape[J]. Nature Chemical Engineering, 2024, 1(1): 97-107.ANG RH, WANG J, WILSON LM, YAN YJ. Protein engineering for improving and diversifying natural product biosynthesis[J]. Trends in Biotechnology, 2020, 38(7): 729-744.
    [41] JIA F, NARASIMHAN B, MALLAPRAGADA S. Materials-based strategies for multi-enzyme immobilization and co-localization: a review[J]. Biotechnology and Bioengineering, 2014, 111(2): 209-222.
    [42] KANG W, MA T, LIU M, QU JL, LIU ZJ, ZHANG HW, SHI B, FU S, MA JC, LAI LTF, HE SC, QU JN, AU SWN, KANG BH, YU LAU WC, DENG ZX, XIA J, LIU TG. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux[J]. Nature Communications, 2019, 10: 4248.
    [43] MARSAFARI M, XU P. Debottlenecking mevalonate pathway for antimalarial drug precursor amorphadiene biosynthesis in Yarrowia lipolytica[J]. Metabolic Engineering Communications, 2020, 10: e00121.
    [44] LIANG ZJ, ZHI H, FANG ZX, ZHANG PZ. Genetic engineering of yeast, filamentous fungi and bacteria for terpene production and applications in food industry[J]. Food Research International, 2021, 147: 110487.
    [45] BANERJEE A, PREISER AL, SHARKEY TD. Correction: engineering of recombinant poplar deoxy-d-xylulose-5-phosphate synthase (PtDXS) by site-directed mutagenesis improves its activity[J]. PLoS One, 2016, 11(10): e0165028.
    [46] MA YS, LIU N, GREISEN P, LI JB, QIAO KJ, HUANG SW, STEPHANOPOULOS G. Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica[J]. Nature Communications, 2022, 13: 572.
    [47] LIU HS, FANG SB, ZHAO L, MEN X, ZHANG HB. A single active-site mutagenesis confers enhanced activity and/or changed product distribution to a pentalenene synthase from Streptomyces sp. PSKA01[J]. Bioengineering, 2023, 10(3): 392.
    [48] NOGUEIRA M, ENFISSI EMA, WELSCH R, BEYER P, ZURBRIGGEN MD, FRASER PD. Construction of a fusion enzyme for astaxanthin formation and its characterisation in microbial and plant hosts: a new tool for engineering ketocarotenoids[J]. Metabolic Engineering, 2019, 52: 243-252.
    [49] CHEAH LC, LIU L, PLAN MR, PENG BY, LU ZY, SCHENK G, VICKERS CE, SAINSBURY F. Product profiles of promiscuous enzymes can be altered by controlling in vivo spatial organization[J]. Advanced Science, 2023, 10(32): e2303415.
    [50] WANG CL, YOON SH, JANG HJ, CHUNG YR, KIM JY, CHOI ES, KIM SW. Metabolic engineering of Escherichia coli for α-farnesene production[J]. Metabolic Engineering, 2011, 13(6): 648-655.
    [51] ZHOU YJ, GAO W, RONG QX, JIN GJ, CHU HY, LIU WJ, YANG W, ZHU ZW, LI GH, ZHU GF, HUANG LQ, Z
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

AmnaBibi,苏立秋,戴宗杰,王钦宏. 萜类化合物微生物合成中酶工程的研究进展与展望[J]. 生物工程学报, 2024, 40(8): 2473-2488

复制
分享
文章指标
  • 点击次数:337
  • 下载次数: 766
  • HTML阅读次数: 431
  • 引用次数: 0
历史
  • 收稿日期:2024-02-28
  • 在线发布日期: 2024-08-08
  • 出版日期: 2024-08-25
文章二维码
您是第5984771位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司