水溶性维生素的生物合成
作者:
基金项目:

国家重点研发计划(2018YFA0901400);国家自然科学基金(32070099, 31971342)


Biosynthesis of water-soluble vitamins
Author:
  • ZHANG Bo

    ZHANG Bo

    The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China;Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIAO Yuzhe

    LIAO Yuzhe

    The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China;Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YU Haonan

    YU Haonan

    The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China;Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Guanghao

    WANG Guanghao

    The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China;Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Zhiqiang

    LIU Zhiqiang

    The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China;Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHENG Yuguo

    ZHENG Yuguo

    The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China;Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [112]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    维生素是维持生物体正常生理功能所必需的一类有机物质,大部分维生素无法由人体合成,少部分维生素只能有限地合成,无法满足自身需求,因而需要通过摄入含维生素的食物或药品来满足自身需要。近年来,维生素被广泛应用于医药、食品或饲料添加剂、化妆品等行业中,人们对维生素的需求也不断增加。维生素的合成方法可分为化学合成法与生物合成法两大类,相较于化学法,生物法合成维生素具有环境友好、安全性高、成本低廉等优势,因此研究生物合成维生素的方法具有一定应用价值。本文综述了近年来水溶性维生素生产领域中生物合成法的研究进展,总结了水溶性维生素(B族维生素、维生素C)生物合成的研究成果,并对生物合成水溶性维生素的发展进行了展望。

    Abstract:

    Vitamins are a class of organic substances essential for maintaining the normal physiological function of organisms. Most vitamins cannot be synthesized by the human body, and a small number of vitamins can only be synthesized in a limited manner, which cannot meet the body needs. Therefore, people need to take food or drugs containing vitamins to meet the body needs. Nowadays, vitamins are widely used in medicine, food or feed additives, cosmetics and other industries, and the demand for vitamins is growing. Vitamins are mainly produced by chemical synthesis and biosynthesis. Compared with chemical synthesis, biosynthesis of vitamins is praised for the environmental friendliness, high safety, and low costs. Therefore, it is of great practical significance to study the biosynthesis methods of vitamins. This paper reviews the research progress in the methods and summarizes the research results in the biosynthesis of water-soluble vitamins (B vitamins and vitamin C) in recent years and then makes an outlook on the future development in this field.

    参考文献
    [1] 王宏亮. 维生素的概述及研究进展[J]. 临床药物治疗杂志, 2022, 20(12): 40-45. WANG HL. Overview and research progress of vitamins[J]. Clinical Medication Journal, 2022, 20(12): 40-45 (in Chinese).
    [2] 张莲玮. 维生素行业深度报告: 13个主要维生素品种生产工艺与市场格局解析[EB/OL]. [2024-02-28]. http://stock.finance.sina.com.cn/stock/go.php/vReport_Show/kind/lastest/rptid/641126651806/index.phtml.
    [3] NISHIHIRA K, NAKAI MJKK. New process for vitamin B1 intermediate[J]. 1991, 55: 433.
    [4] CHUCK RJ, ZACHER U. Process for the preparation of nicotinic acid: US6077957A[P]. 2000-06-20.
    [5] NIELSEN J. Metabolic engineering[J]. Applied Microbiology and Biotechnology, 2001, 55(3): 263-283.
    [6] STEPHANOPOULOS G, VALLINO JJ. Network rigidity and metabolic engineering in metabolite overproduction[J]. Science, 1991, 252(5013): 1675-1681.
    [7] BAILEY JE. Toward a science of metabolic engineering[J]. Science, 1991, 252(5013): 1668-1675.
    [8] BENNER SA, SISMOUR AM. Synthetic biology[J]. Nature Reviews Genetics, 2005, 6: 533-543.
    [9] KEASLING JD. Synthetic biology for synthetic chemistry[J]. ACS Chemical Biology, 2008, 3(1): 64-76.
    [10] ANDRIANANTOANDRO E, BASU S, KARIG DK, WEISS R. Synthetic biology: new engineering rules for an emerging discipline[J]. Molecular Systems Biology, 2006, 2: 2006.0028.
    [11] TYO KE, ALPER HS, STEPHANOPOULOS GN. Expanding the metabolic engineering toolbox: more options to engineer cells[J]. Trends in Biotechnology, 2007, 25(3): 132-137.
    [12] CLINE JK, WILLIAMS RR, FINKELSTEIN J. Studies of crystalline vitamin B1. XVII. synthesis of vitamin B1[J]. Journal of the American Chemical Society, 1937, 59(6): 1052-1054.
    [13] HROMATKA O. Process of preparing Derivatives of pyrimidine: US2235638A[P]. 1941-03-18.
    [14] 中国维生素B1 (单硝酸硫胺素)行业规模及市场格局分析报告[EB/OL]. [2024-02-28]. https://www.sohu. com/a/758568194_121825642.
    [15] 2022–2028全球及中国维生素B1 (食品应用)行业研究及“十四五规划”分析报告[EB/OL]. [2024-02-28]. https://www.qyresearch.com.cn/reports/vitamin-b1-food-application-p940752.html.
    [16] BEGLEY TP, DOWNS DM, EALICK SE, McLAFFERTY FW, van LOON APGM, TAYLOR S, CAMPOBASSO N, CHIU HJ, KINSLAND C, REDDICK JJ, XI J. Thiamin biosynthesis in prokaryotes[J]. Archives of Microbiology, 1999, 171(5): 293-300.
    [17] SCHYNS G, POTOT S, GENG Y, BARBOSA TM, HENRIQUES A, PERKINS JB.. Isolation and characterization of new thiamine-deregulated mutants of Bacillus subtilis[J]. Journal of Bacteriology, 2005, 187(23): 8127-36.
    [18] CARDINALE S, TUEROS FG, SOMMER MOA. Genetic-metabolic coupling for targeted metabolic engineering[J].Cell Reports, 2017, 20(5): 1029-1037.
    [19] KAWASAKI T, IWASHIMA A, NOSE Y. Regulation of thiamine biosynthesis in Escherichia coli[J]. The Journal of Biochemistry, 1969, 65(3): 407-416.
    [20] ROCCHI R, WOLKERS-ROOIJACKERS JCM, LIAO ZT, TEMPELAARS MH, SMID EJ. Strain diversity in Saccharomyces cerevisiae thiamine production capacity[J]. Yeast, 2023, 40(12): 628-639.
    [21] KAWASAKI Y, NOSAKA K, KANEKO Y, NISHIMURA H, IWASHIMA A. Regulation of thiamine biosynthesis in Saccharomyces cerevisiae[J]. Journal of Bacteriology, 1990, 172(10): 6145-6147.
    [22] STROBBE S, VERSTRAETE J, STOVE C, van der STRAETEN D. Metabolic engineering provides insight into the regulation of thiamin biosynthesis in plants[J]. Plant Physiology, 2021, 186(4): 1832-1847.
    [23] MINHAS AP, TULI R, PURI S. Pathway editing targets for thiamine biofortification in rice grains[J]. Frontiers in Plant Science, 2018, 9: 975.
    [24] ERNST H, SCHMIDT W, PAUST J. Preparation of riboflavin: US4567261A[P]. 1986-01-28.
    [25] ERNST H, ECKHARDT H, PAUST J. Preparation of riboflavin, and 4,5-dimethyl-N-(D)-ribityl-2-(O- alkoxyphenylazo)-aniline intermediates: US4656275A[P]. 1987-04-07.
    [26] 新用途加持维生素B2销量破纪录[EB/OL]. [2024-02-28]. https://www.yyjjb.com.cn/yyjjb/202108/20210823153308338_10868.shtml.
    [27] SZCZEŚNIAK T, KARABIN L, SZCZEPANKOWSKA M, WITUCH K. Biosynthesis of riboflavin by Ashbya gossypii. I. The influence of fats of the animal origin on the riboflavin production[J]. Acta Microbiologica Polonica Series B: Microbiologia Applicata, 1971, 3(1): 29-34.
    [28] PARK EY, ITO Y, NARIYAMA M, SUGIMOTO T, LIES D, KATO T. The improvement of riboflavin production in Ashbya gossypii via disparity mutagenesis and DNA microarray analysis[J]. Applied Microbiology and Biotechnology, 2011, 91(5): 1315-1326.
    [29] DONALD LH, CRAIG AW, MICHAEL JY, LINDA AB. Method for producing riboflavin with Candida famata: US5164303A[P]. 1992-11-17.
    [30] WU QL, CHEN T, GAN Y, CHEN X, ZHAO XM. Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs[J]. Applied Microbiology and Biotechnology, 2007, 76(4): 783-794.
    [31] HAN LK, HYANG C, HO LK, APT. KS, KWON HJ, HOON PY, HEE PJ. Microorganisms and process for the production of riboflavin by fermentation: EP1426450A1[P]. 2004-06-09.
    [32] KOIZUMI S, YONETANI Y, MARUYAMA A, TESHIBA S. Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes[J]. Applied Microbiology and Biotechnology, 2000, 53(6): 674-679.
    [33] LIU S, HU WY, WANG ZW, CHEN T. Rational engineering of Escherichia coli for high-level production of riboflavin[J]. Journal of Agricultural and Food Chemistry, 2021, 69(41): 12241-12249.
    [34] THAKUR K, TOMAR SK, DE S. Lactic acid bacteria as a cell factory for riboflavin production[J]. Microbial Biotechnology, 2016, 9(4): 441-451.
    [35] KULKA M. Electrolytic oxidation of quinoline and 3-picoline[J]. Journal of the American Chemical Society, 1946, 68(12): 2472.
    [36] 烟酸(维生素B3)市场出货量及增长分析[EB/OL]. [2024-02-18]. https://www.shangyexinzhi.com/article/ 10495614.html.
    [37] MATHEW CD, NAGASAWA T, KOBAYASHI M, YAMADA H. Nitrilase-catalyzed production of nicotinic acid from 3-cyanopyridine in Rhodococcus rhodochrous J1[J]. Applied and Environmental Microbiology, 1988, 54(4): 1030-1032.
    [38] SHARMA NN, SHARMA M, KUMAR H, BHALLA TC. Nocardia globerula NHB-2: bench scale production of nicotinic acid[J]. Process Biochemistry, 2006, 41(9): 2078-2081.
    [39] BADOEI-DALFARD A, KARAMI Z, RAMEZANI- POUR N. Bench scale production of nicotinic acid using a newly isolated Stenotrophomonas maltophilia AC21 producing highly-inducible and versatile nitrilase[J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 133: S552-S559.
    [40] PAI O, BANOTH L, GHOSH S, CHISTI Y, BANERJEE UC. Biotransformation of 3-cyanopyridine to nicotinic acid by free and immobilized cells of recombinant Escherichia coli[J]. Process Biochemistry, 2014, 49(4): 655-659.
    [41] DONG TT, GONG JS, GU BC, ZHANG Q, LI H, LU ZM, LU ML, SHI JS, XU ZH. Significantly enhanced substrate tolerance of Pseudomonas putida nitrilase via atmospheric and room temperature plasma and cell immobilization[J]. Bioresource Technology, 2017, 244(Pt 1): 1104-1110.
    [42] GONG JS, ZHANG Q, GU BC, DONG TT, LI H, LI H, LU ZM, SHI JS, XU ZH. Efficient biocatalytic synthesis of nicotinic acid by recombinant nitrilase via high density culture[J]. Bioresource Technology, 2018, 260: 427-431.
    [43] BELENKY P, STEBBINS R, BOGAN KL, EVANS CR, BRENNER C. Nrt1 and Tna1-independent export of NAD+ precursor vitamins promotes NAD+ homeostasis and allows engineering of vitamin production[J]. PLoS One, 2011, 6(5): e19710.
    [44] ZOU SP, ZHANG Z, ZHAO K, LIU ZQ, ZHENG YG. Metabolic engineering of Escherichia coli for improved d-pantothenic acid biosynthesis by enhancing NADPH availability[J]. Biochemical Engineering Journal, 2022, 187: 108603.
    [45] 我国维生素B5市场规模逐渐扩大 龙头企业已经显现[EB/OL]. [2024-02-18]. http://www.newsijie.com/ chanye/yiyao/jujiao/2023/0612/11331477.html.
    [46] 2022年中国维生素B5 (泛酸钙)行业现状及竞争格局分析, 价格回暖, 市场竞争加剧[EB/OL]. [2024-07-18]. https://www.huaon.com/channel/trend/902287.html.
    [47] LIU ZQ, SUN ZH. Cloning and expression of d-lactonohydrolase cDNA from Fusarium moniliforme in Saccharomyces cerevisiae[J]. Biotechnology Letters, 2004, 26(24): 1861-1865.
    [48] LIU ZQ, SUN ZH, LENG Y. Directed evolution and characterization of a novel d-pantonohydrolase from Fusarium moniliforme[J]. Journal of Agricultural and Food Chemistry, 2006, 54(16): 5823-5830.
    [49] HERMANN T, PATTERSON TA, PERO JG, YOCUM RR, BALDENIUS KU, BECK C, YOCUM RR. Processes for enhanced production of pantothenate: US7220561B2[P]. 2003-07-18.
    [50] TIGU F, ZHANG JL, LIU GX, CAI Z, LI Y. A highly active pantothenate synthetase from Corynebacterium glutamicum enables the production of d-pantothenic acid with high productivity[J]. Applied Microbiology and Biotechnology, 2018, 102(14): 6039-6046.
    [51] HIKICHI Y, MORIYA T, MIKI H, YAMAGUCHI T, NOGAMI I. Production of d-pantoic acid and d-pantothenic acid: US5518906A[P]. 1996-05-21.
    [52] MORIYA T, HIKICHI Y, MORIYA Y, YAMAGUCHI T. Process for producing d-pantoic acid and d-pantothenic acid or salts thereof: US5932457A[P]. 1997-01-08.
    [53] CHASSAGNOLE C, DIANO A, LÉTISSE F, LINDLEY ND. Metabolic network analysis during fed-batch cultivation of Corynebacterium glutamicum for pantothenic acid production: first quantitative data and analysis of by-product formation[J]. Journal of Biotechnology, 2003, 104(1/2/3): 261-272.
    [54] ZHANG B, CHEN L, JIN JY, ZHONG N, CAI X, ZOU SP, ZHOU HY, LIU ZQ, ZHENG YG. Strengthening the (R)-pantoate pathway to produce d-pantothenic acid based on systematic metabolic analysis[J]. Food Bioscience, 2021, 43: 101283.
    [55] ZHANG B, ZHANG XM, WANG W, LIU ZQ, ZHENG YG. Metabolic engineering of Escherichia coli for d-pantothenic acid production[J]. Food Chemistry, 2019, 294: 267-275.
    [56] ABOUL-ENEIN HY, LOUTFY MA. Pyridoxine Hydrochloride[M]//FLOREY K. Analytical Profiles of Drug Substances. London: Academic Press. 1984: 447-86.
    [57] ZOU Y, SHI XJ, ZHANG GB, LI ZH, JIN C, SU WK. Improved “oxazole” method for the practical and efficient preparation of pyridoxine hydrochloride (vitamin B6)[J]. Organic Process Research & Development, 2013, 17(12): 1498-1502.
    [58] 2023年中国维生素B6行业市场研究报告[EB/OL]. [2024-02-18]. https://www.sohu.com/a/685270688_ 120928700.
    [59] MUKHERJEE T, HANES J, TEWS I, EALICK SE, BEGLEY TP. Pyridoxal phosphate: biosynthesis and catabolism[J]. Biochimica et Biophysica Acta, 2011, 1814(11): 1585-1596.
    [60] YOCUM RR, WILLIAMS MK, PERO JG. Methods and organisms for production of B6 vitamers: US20050164335A1[P]. 2005-07-28.
    [61] HOSHINO T, ICHIKAWA K, TAZOE M. Recombinant microorganism for the production of vitamin B6: US20060228785[P]. 2006-10-12.
    [62] HOSHINO T, ICHIKAWA K, NAGAHASHI Y, TAZOE M. Microorganism and process for preparing vitamin B6: US20060127992A1[P]. 2006-06-15.
    [63] COMMICHAU FM, ALZINGER A, SANDE R, BRETZEL W, MEYER FM, CHEVREUX B, WYSS M, HOHMANN HP, PRÁGAI Z. Overexpression of a non-native deoxyxylulose-dependent vitamin B6 pathway in Bacillus subtilis for the production of pyridoxine[J]. Metabolic Engineering, 2014, 25: 38-49.
    [64] COMMICHAU FM, ALZINGER A, SANDE R, BRETZEL W, REUß DR, DORMEYER M, CHEVREUX B, SCHULDES J, DANIEL R, AKEROYD M, WYSS M, HOHMANN HP, PRÁGAI Z. Engineering Bacillus subtilis for the conversion of the antimetabolite 4-hydroxy-l-threonine to pyridoxine[J]. Metabolic Engineering, 2015, 29: 196-207.
    [65] LIU LX, LI JL, GAI YM, TIAN ZZ, WANG YY, WANG TH, LIU P, YUAN QQ, MA HW, LEE SY, ZHANG DW. Protein engineering and iterative multimodule optimization for vitamin B6 production in Escherichia coli[J]. Nature Communications, 2023, 14: 5304.
    [66] STERNBACH LH, WOLF GM. Synthesis of biotin: US2489235A[P]. 1949-11-22.
    [67] 2023–2029全球与中国维生素B7 (生物素)市场现状及未来发展趋势[EB/OL]. [2024-02-18]. https://www. qyresearch.com.cn/reports/vitamin-b7-biotin-p2058807.html.
    [68] STREIT WR, ENTCHEVA P. Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production[J]. Applied Microbiology and Biotechnology, 2003, 61(1): 21-31.
    [69] KANZAKI N, KAWAMOTO T, MATSUI J, NAKAHAMA K, IFUKU O. Microorganism resistant to threonine analogue and production of biotin: US6284500B1[P]. 2001-09-04.
    [70] BOWER SG, PERKINS JB, YOCUM RR, PERO JG. Biotin biosynthesis in Bacillus subtilis: US6057136A[P]. 2000-05-02.
    [71] IFUKU O, HAZE S, KISHIMOTO J, KOGA N, YANAGI M, FUKUSHIMA S. Sequencing analysis of mutation points in the biotin operon of biotin-overproducing Escherichia coli mutants[J]. Bioscience, Biotechnology, and Biochemistry, 1993, 57(5): 760-765.
    [72] CHAKRAVARTTY V, CRONAN JE. The wing of a winged helix-turn-helix transcription factor organizes the active site of BirA, a bifunctional repressor/ligase[J]. The Journal of Biological Chemistry, 2013, 288(50): 36029-36039.
    [73] LIN S, CRONAN JE. Closing in on complete pathways of biotin biosynthesis[J]. Molecular BioSystems, 2011, 7(6): 1811-1821.
    [74] IKEDA M, NAGASHIMA T, NAKAMURA E, KATO R, OHSHITA M, HAYASHI M, TAKENO S. In vivo roles of fatty acid biosynthesis enzymes in biosynthesis of biotin and α-lipoic acid in Corynebacterium glutamicum[J]. Applied and Environmental Microbiology, 2017, 83(19): e01322-17.
    [75] XIAO F, WANG HJ, SHI ZW, HUANG QY, HUANG L, LIAN JZ, CAI J, XU ZN. Multi-level metabolic engineering of Pseudomonas mutabilis ATCC31014 for efficient production of biotin[J]. Metabolic Engineering, 2020, 61: 406-415.
    [76] WEI PP, ZHU FC, CHEN CW, LI GS. Engineering a heterologous synthetic pathway in Escherichia coli for efficient production of biotin[J]. Biotechnology Letters, 2021, 43(6): 1221-1228.
    [77] MANANDHAR M, CRONAN JE. Pimelic acid, the first precursor of the Bacillus subtilis biotin synthesis pathway, exists as the free acid and is assembled by fatty acid synthesis[J]. Molecular Microbiology, 2017, 104(4): 595-607.
    [78] 行业报告: 全球叶酸原料药市场规模分析[EB/OL]. [2024-02-18]. https://zhuanlan.zhihu.com/p/575981001.
    [79] LEBLANC J, GIORI G, SMID E, HUGENHOLTZ J, SESMA F. Folate production by lactic acid bacteria and other food-grade microorganisms[J]. Communicating Current Research and Educational Topics and Trends in Applied Microbiolog, 2007, 1: 329-39.
    [80] HUGENHOLTZ J, SMID EJ. Nutraceutical production with food-grade microorganisms[J]. Current Opinion in Biotechnology, 2002, 13(5): 497-507.
    [81] HAYEK SA, IBRAHIM SA. Current limitations and challenges with lactic acid bacteria: a review[J]. Food and Nutrition Sciences, 2013, 4(11): 73-87.
    [82] JÄGERSTAD M, JASTREBOVA J. Occurrence, stability, and determination of formyl folates in foods[J]. Journal of Agricultural and Food Chemistry, 2013, 61(41): 9758-9768.
    [83] CURRAN KA, LEAVITT JM, KARIM AS, ALPER HS. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2013, 15: 55-66.
    [84] ZHU LH, WANG JH, XU S, SHI GY. Improved aromatic alcohol production by strengthening the shikimate pathway in Saccharomyces cerevisiae[J]. Process Biochemistry, 2021, 103: 18-30.
    [85] HJORTMO S, PATRING J, JASTREBOVA J, ANDLID T. Inherent biodiversity of folate content and composition in yeasts[J]. Trends in Food Science & Technology, 2005, 16(6/7): 311-316.
    [86] SU YK, WILLIS LB, JEFFRIES TW. Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124[J]. Biotechnology and Bioengineering, 2015, 112(3): 457-469.
    [87] JEFFRIES TW, van VLEET JRH. Pichia stipitis genomics, transcriptomics, and gene clusters[J]. FEMS Yeast Research, 2009, 9(6): 793-807.
    [88] SHIN M, KIM JW, YE SJ, KIM S, JEONG D, LEE DY, KIM JN, JIN YS, KIM KH, KIM SR. Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis[J]. Applied Microbiology and Biotechnology, 2019, 103(13): 5435-5446.
    [89] MASTELLA L, SENATORE VG, GUZZETTI L, COPPOLINO M, CAMPONE L, LABRA M, BELTRANI T, BRANDUARDI P. First report on Vitamin B9 production including quantitative analysis of its vitamers in the yeast Scheffersomyces stipitis[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 98.
    [90] SERRANO-AMATRIAIN C, LEDESMA-AMARO R, LÓPEZ-NICOLÁS R, ROS G, JIMÉNEZ A, REVUELTA JL. Folic acid production by engineered Ashbya gossypii[J]. Metabolic Engineering, 2016, 38: 473-482.
    [91] ESCHENMOSER A. Organische naturstoffsynthese heute vitamin B12 als beispiel[J]. Naturwissenschaften, 1974, 61(12): 513-525.
    [92] 2023年维生素B12市场需求分析: 中国维生素B12市场规模为4.15亿元[EB/OL]. [2024-02-18]. https://www.chinabgao.com/ info/1248065.html.
    [93] KANG Z, ZHANG JL, ZHOU JW, QI QS, DU GC, CHEN J. Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12[J]. Biotechnology Advances, 2012, 30(6): 1533-1542.
    [94] MARTENS JH, BARG H, WARREN MJ, JAHN D. Microbial production of vitamin B12[J]. Applied Microbiology and Biotechnology, 2002, 58(3): 275-285.
    [95] KIATPAPAN P, YAMASHITA M, KAWARAICHI N, YASUDA T, MUROOKA Y. Heterologous expression of a gene encoding cholesterol oxidase in probiotic strains of Lactobacillus plantarum and Propionibacterium freudenreichii under the control of native promoters[J]. Journal of Bioscience and Bioengineering, 2001, 92(5): 459-465.
    [96] KIATPAPAN P, HASHIMOTO Y, NAKAMURA H, PIAO YZ, ONO H, YAMASHITA M, MUROOKA Y. Characterization of pRGO1, a plasmid from Propionibacterium acidipropionici, and its use for development of a host-vector system in propionibacteria[J]. Applied and Environmental Microbiology, 2000, 66(11): 4688-4695.
    [97] PIAO YZ, YAMASHITA M, KAWARAICHI N, ASEGAWA R, ONO H, MUROOKA Y. Production of vitamin B12 in genetically engineered Propionibacterium freudenreichii[J]. Journal of Bioscience and Bioengineering, 2004, 98(3): 167-173.
    [98] CAI YY, XIA MM, DONG HN, QIAN Y, ZHANG TC, ZHU BW, WU JC, ZHANG DW. Engineering a vitamin B12 high-throughput screening system by riboswitch sensor in Sinorhizobium meliloti[J]. BMC Biotechnology, 2018, 18(1): 27.
    [99] MOORE SJ, MAYER MJ, BIEDENDIECK R, DEERY E, WARREN MJ. Towards a cell factory for vitamin B12 production in Bacillus megaterium: bypassing of the cobalamin riboswitch control elements[J]. New Biotechnology, 2014, 31(6): 553-561.
    [100] FANG H, LI D, KANG J, JIANG PT, SUN JB, ZHANG DW. Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12[J]. Nature Communications, 2018, 9: 4917.
    [101] 2022年中国维生素C发展现状、市场竞争格局及发展趋势[EB/OL]. [2024-02-28]. https://www.163.com/ dy/article/HR45JK7 10552SV13.html.
    [102] Reichstein T, Grussner A. Productive synthesis of l-ascorbic acid, vitamin C[J]. Helvetica Chimica Acta, 1934.
    [103] 尹光琳, 陶增鑫, 于龙华, 王大耜, 谈家林, 严自正, 宁文珠, 王长会, 王书鼎, 姜慧凤, 张秀明, 冯晓云, 赵强, 魏文巧. l-山梨糖发酵产生维生素C前体: 2-酮基-l-古龙酸的研究Ⅰ.菌种的分离筛选和鉴定[J]. 微生物学报, 1980, 20(3): 246-251. YIN GL, TAO ZX, YU LH, WANG DS, TAN JL, YAN ZZ,NING WZ, WANG CH, WANG SD, JIANG HF, ZHANG XM, FENG XY, ZHAO Q, WEI WQ. Studies on the production of vitamin C precursor 2-ketoyl-l-Gulonic acid from l-sorbate fermentation Ⅰ. Isolation, screening and identification of strains[J]. Acta Microbiologica Sinica, 1980, 20(3): 246-251 (in Chinese).
    [104] 满都拉, 杨伟超, 徐慧, 张忠泽. 维生素C二步发酵中伴生菌促进产酸菌产酸机制的研究[C]. 中国微生物学会学术年会, 2013. MAN DL, YANG WC,XU H,ZHANG ZZ, Study on the mechanism of promoting acid-producing bacteria by associated bacteria in the two-step fermentation of vitamin C[C]. Annual Conference of Chinese Society of Microbiology, 2013 (in Chinese).
    [105] WANG CY, LI Y, GAO ZW, LIU LC, WU YC, ZHANG MY, ZHANG TY, ZHANG YX. Reconstruction and analysis of carbon metabolic pathway of Ketogulonicigenium vulgare SPU B805 by genome and transcriptome[J]. Scientific Reports, 2018, 8: 17838.
    [106] WANG CY, LI Y, GAO ZW, LIU LC, ZHANG MY, ZHANG TY, WU CF, ZHANG YX. Establishing an innovative carbohydrate metabolic pathway for efficient production of 2-keto-l-gulonic acid in Ketogulonicigenium robustum initiated by intronic promoters[J]. Microbial Cell Factories, 2018, 17(1): 81.
    [107] SUGISAWA T, MIYAZAKI T, HOSHINO T. Microbial production of l-ascorbic acid from d-sorbitol, l-sorbose, l-gulose, and l-sorbosone by Ketogulonicigenium vulgare DSM 4025[J]. Bioscience, Biotechnology, and Biochemistry, 2005, 69(3): 659-662.
    [108] SAUER M, BRANDUARDI P, VALLI M, PORRO D. Production of l-ascorbic acid by metabolically engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii[J]. Applied and Environmental Microbiology, 2004, 70(10): 6086-6091.
    [109] ZENG WZ, WANG PP, LI N, LI JH, CHEN J, ZHOU JW. Production of 2-keto-l-gulonic acid by metabolically engineered Escherichia coli[J]. Bioresource Technology, 2020, 318: 124069.
    [110] LI D, DENG ZW, HOU XD, QIN ZJ, WANG XL, YIN DJ, CHEN Y, RAO YJ, CHEN J, ZHOU JW. Structural insight into the catalytic mechanisms of an l-sorbosone dehydrogenase[J]. Advanced Science, 2023, 10(30): e2301955.
    [111] LI G, LI D, ZENG WZ, QIN ZJ, CHEN J, ZHOU JW. Efficient production of 2-keto-l-gulonic acid from d-glucose in Gluconobacter oxydans ATCC9937 by mining key enzyme and transporter[J]. Bioresource Technology, 2023, 384: 129316.
    [112] EL-SAMAD H. The next emergence of synthetic biology[J]. GEN Biotechnology, 2024, 3(1): 1-2.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张博,廖宇哲,余浩楠,王广豪,柳志强,郑裕国. 水溶性维生素的生物合成[J]. 生物工程学报, 2024, 40(8): 2528-2551

复制
分享
文章指标
  • 点击次数:345
  • 下载次数: 1457
  • HTML阅读次数: 424
  • 引用次数: 0
历史
  • 收稿日期:2024-02-28
  • 在线发布日期: 2024-08-08
  • 出版日期: 2024-08-25
文章二维码
您是第5984695位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司