Application of lysis system in bacterial vector vaccines
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (Nos. 31472179, 31570928).

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Recombinant bacterial vector vaccines have been widely used as carriers for the delivery of protective antigens and nucleic acid vaccines to prevent certain infectious diseases because of their ability to induce mucosal immunity, humoral immunity and cellular immunity. However, protective antigens and nucleic acids recombined into bacterial vector vaccines are difficult to be released into host cells because of the presence of bacterial cell wall. Vaccine strains that are residual in animals or livestock products may also cause environmental contamination and spread of the vaccine strains. The effective solution for these problems is to construct an auto-lysis system that can regulate the vaccine strains to grow normally in vitro while lysis in vivo. The lysis systems that have been applied in germs mainly include: the lysis system based on regulated delayed peptidoglycan synthesis, the lysis system based on the regulation of bacteriophage lysis protein and the lysis system based on the toxin-antitoxin system. In addition, a potential lysis system based on bacterial Type Ⅵ Secretion System (T6SS) is also expected to be a new method for the construction of auto-lysis strains. This review will focus on the regulatory mechanisms of these bacterial lysis systems.

    Reference
    Related
    Cited by
Get Citation

唐一波,刘青,李沛,罗红艳,孔庆科. 裂解系统在细菌载体疫苗中的应用[J]. Chinese Journal of Biotechnology, 2019, 35(3): 375-388

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 06,2018
  • Revised:
  • Adopted:
  • Online: March 22,2019
  • Published:
Article QR Code