Abstract:Transcription factor-based biosensors (TFBs) play an essential role in metabolic engineering and synthetic biology. TFBs sense the metabolite concentration signals and convert them into specific signal output. They hold high sensitivity, strong specificity, brief analysis speed, and are widely used in response to target metabolites. Here we reviewe the principles of TFBs, the application examples, and challenges faced in recent years in microbial cells, including detecting target metabolite concentrations, high-throughput screening, adaptive laboratory evolutionary selection, and dynamic control. Simultaneously, to overcome the challenges in the application, we also focus on reviewing the performance tuning strategies of TFBs, mainly including traditional and computer-aided tuning strategies. We also discuss the opportunities and challenges that TFBs may face in practical applications, and propose the future research trend.